Transcript Test
Gene finding pipelines for automatic annotation of new eukaryotic and bacterial genomes Victor Solovyev Professor of computer science, Royal Holloway, University of London Chairman, Softberry Inc. New genomes sequencing Human, Mouse, Rat, Cow, Sheep, Cat, Dog, Pig, Chicken, Drosophila, Bee, Zebrafish, Fugu, Nematodes Arabidopsis, Rice, Medicago, Soybean, Barley, Poplar, Tomato, Oat, Wheat, Corn S.cerevisiae, S.pombe, Aspergillus nidulans, Coprinus cinereus Cryptococcus neoformans, Fusarium graminearum Magnaporthe grisea Neurospora crassa Ustilago maydis Anopheles, P. falciparum, E. cuniculi, Chlamy, Ciona, Diatom, White rot, P. sojae Bacterial & bacterial communities Expression stages and structural organization of typical eukaryotic protein-coding gene 5’-non-coding exon Start of transcription Enhancer 3’-non-coding exon Introns ATGcodon Stopcodon Internal exons Core promoter 5’- Poly-A signal 3’- Transcription, 5’-Capping and 3’-polyadenilation Pre-mRNA Splicing (removing of intron sequences) mRNA Translation Protein Ab initio multiple gene prediction approaches Genescan (Burge, Karlin,1997) Probabilistic HMMgene (Krogh, 1977) Fgenesh (Salamov, Solovyev,1998) Genie (Reese et al., 2000) Likelihoods of gene components, HMM Balanced score as production of likelihoods, simple features GeneID (Guigo at al. 1992) Pattern recognition Neural networks Fgenes (Solovyev,1997) Discriminant functions Flexible combinations of any discriminative features Hidden Markov model of multiple eukaryotic genes Used in Genescan and Fgenesh programs Ei and Ii are different exon and intron states, respectively (i=0,1,2 reflect 3 possible different ORF). E 5/3 marks non-coding exons and I5/I3 are 5’- and 3’-introns adjacent to non-coding exons. I5 E0 E1 E2 I0 I1 I2 I3 EL E3 EF E5 5’- 3’- E0 Pr PolyA N PolyA 3’- Pr 5’- E0 E5 EL I3 I0 I1 I2 E0 E1 E2 EF E3 I5 Figure 10. Different functional regions of the first, internal, last and single coding exons corresponding to components of recognition functions. RBS is ribosome binding site, ORF is open reading frame, A and D are acceptor and donor splice sites, respectively, Stop is (TAA, TAG, TGA stop codons). RBS 5’-region ATG ORF D intron 5’-exon intron A ORF D intron intron A ORF Stop 3’-region Internal exon 3’-exon 5’-region Single exon ATG ORF Stop 3’-region Signal differences: start of translation Signal differences: donor splice site Importance of good specific parameters: Rice example Fgenesh with Monocot gene-finding parametres . Strategy to make gene-finding parameters for new genomes 1. Using GeneBank genes for close organisms 2. Using new genomic sequence • a) Having known mRNA/cDNA sequences • Map mRNA by EST_MAP program on genomic sequence • Extract genes and use them as learning set • b) Using ab initio gene-prediction Predict genes, Select genes with protein support c) Using a database of known proteins (NR) that can be mapped on genome by Prot_map program with reconstructing gene-structure In addition find protein coding ORF by BESTORF program in a set of ESTs and use them in learning of coding parameters Learning parameters using GeneBank genes for close organisms Select GeneBank organism class having enough known genes Create Infogene database with reconstructed genes running Infog program (some genes might be described in several GeneBank entries) Run GetGenes program to extract genes from Infogen to use in learning programs (with cleaning genes with errors in annotation in ORF and splice sites) Run Efeature program to create: set of coding regions (usually significantly bigger than set of genes) set of non-coding regions Run scripts/programs of learning coding parameters (might be several GC zones) Run scripts/programs of learning splice sites parameters Run scripts/programs to create exon length distributions and other statistics Check parameters of initial probabilities (exons/introns/noncoding) depending on gene density in genome and gene structure Test and edit parameters to select the best variant. Repeat learning on bigger or smaller organism classes and select the best learning set. Developed parameters for fgenesh group of programs: • Human, Mouse, Drosophila, C. elegans, Fish (WUSTL, Baylor, CSHL, JGI) • • Dicots (Arabidopsis), Nicotiana tabacum, Monocots (Corn, Rice, Wheat, Barley) (TIGR, Rutgers University) • Algae, Plasmodium falciparum, Anopheles gambiae • • Schizosaccharomyces pombe, Neurospora crassa, Aspergillus nidulans, Coprinus cinereus, Cryptococcus neoformans, Fusarium graminearum, Magnaporthe grisea, Ustilago maydis (MIT/Broad Institute) • • Medicago (University of Minnesota) Brugie malayi (TIGR) FGENESH++: AUTOMATIC EUKARYOTIC GENOME ANNOTATION PIPELINE 1. RefSeq mRNA mapping by Est_map program - mapped genes are excluded from further gene prediction process. 2. Map all known proteins (NR) on genome by Prot_map program with gene structure reconstruction (find regions occupied by genes) 3. Run Fgenesh+ using mapped proteins and selected genome sequences 4. Run ab initio Fgenesh gene prediction on the rest of genome. 5. Search for protein homologs (by BLAST) of all products of predicted genes in NR. 6. Run Fgenesh+ gene prediction on sequences (from stage 4) having protein homologs. 7. Second run of Fgenesh in regions free from genes selected on stages 1,3,5. 8. Run of Fgenesh gene predictions in large introns of known and predicted genes. Special variant of FGENESH++ can take into account synteny (human-mouse, for example) using FGENESH-2 program that predicts genes using 2 similar genomic sequences from different species. Components of Fgenesh++ automatic pipeline: Gene-finding group of program have mostly common components and working with the same organism-specific parameters Fgenesh – ab initio gene prediction. Run on whole chromosomes (~300MB). FAST: The Human genome of 3 GB sequences is processed for ~ 4 hours Fgenesh+ This derivative of Fgenesh uses information on homologous proteins to improve accuracy of gene prediction, if such homologs can be found. Fgenesh-2 Variant of Fgenesh that uses homology between two genomic DNAsequences, such as human and mouse, as an extra factor for more accurate gene prediction. Fgenesh_C uses information on homologous mRNA/EST to improve accuracy of gene prediction. Can be used to reconstruct alternatively spliced genes. Components of Fgenesh++ automatic pipeline: Programs for mapping known mRNA/Est or proteins with reconstruction of gene structure Est_map a program for fast mapping of a set of mRNAs/ESTs to a chromosome sequence. It takes into account splice site weight matrices for accurate mapping (important for accurate mapping very small exons). Prot_map is used for fast mapping a database of protein sequences to genome with accounting for splice sites (useful for genomes with a few known genes and to search for pseudogenes). Example of Prot_map mapping of a protein sequence to genome First sequence Chr19 [cut:1 3000000] [DD] Sequence: 1( 1), S: 52.623, L:1739 IPI:IPI00170643.1|SWISS-PROT:Q8TEK3-1 Summ of block lengths: 1468, Alignment bounds: On first sequence: start 2146727, end On second sequence: start 263, end 2167939, length 21213 1739, length 1477 Blocks of alignment: 19 1 E: 2146727 70 [ca GT] P: 2146727 263 L: 23, G: 101.313, W: 1160, S:14.1355 2 E: 2147573 107 [AG GT] P: 2147575 287 L: 35, G: 102.892, W: 1810, S:17.7256 3 E: 2148934 42 [AG GT] P: 2148934 322 L: 14, G: 102.539, W: 720, S:11.1699 4 E: 2150399 111 [AG GT] P: 2150399 336 L: 37, G: 101.777, W: 1880, S:18.0157 5 E: 2150620 235 [AG GT] P: 2150620 373 L: 78, G: 101.251, W: 3930, S:26.0143 6 E: 2151098 114 [AG GT] P: 2151100 452 L: 37, G: 105.778, W: 2000, S:18.7669 7 E: 2151750 92 [AG GT] P: 2151752 490 L: 30, G: 101.188, W: 1510, S:16.1227 8 E: 2153538 102 [AG GT] P: 2153538 520 L: 34, G: 100.414, W: 1690, S:17.0246 9 E: 2153848 138 [AG GT] P: 2153848 554 L: 46, G: 99.168, W: 2240, S:19.5414 10 E: 2154470 126 [AG GT] P: 2154470 600 L: 42, G: 101.071, W: 2110, S:19.0531 11 E: 2156280 485 [AG GT] P: 2156280 642 L: 161, G: 102.616, W: 8290, S:37.9091 12 E: 2156954 136 [AG GT] P: 2156955 804 L: 45, G: 103.244, W: 2340, S:20.1719 13 E: 2157771 147 [AG GT] P: 2157771 849 L: 49, G: 98.511, W: 2360, S:20.0267 14 E: 2160107 115 [AG GT] P: 2160107 898 L: 38, G: 100.777, W: 1900, S:18.0672 15 E: 2161975 584 [AG GT] P: 2161977 937 L: 194, G: 101.031, W: 16 E: 2163280 206 [AG GC] P: 2163280 1131 L: 68, G: 103.135, W: 3530, S:24.7691 17 E: 2165387 65 [AG GT] P: 2165388 1200 L: 21, G: 98.427, W: 1010, S:13.0987 18 E: 2166182 945 [AG GT] P: 2166184 1222 L: 314, G: 102.034, W: 16020, S:52.6232 19 E: 2167736 608 [AG ta] P: 2167738 1538 L: 202, G: 104.624, W: 10730, S:43.3437 9740, S:40.932 Prot_map example of alignment 1 11 2146713 2146723 2146739 2146769 gatcacagaggctgg(..)agtgtctgtgtttca?[GGRIVSSKPFAPLNFRINSRNLSg ...............(..)evdhqlkerfanmke GGRIVSSKPFAPLNFRINSRNLS- 248 248 249 259 267 277 2146797 2146806 2147558 2147568 2147581 2147611 ]gtaagaaactctcat(..)ctgtggctcctgcag[acIGTIMRVVELSPLKGSVSWTGK ---------------(..)--------------- -dIGTIMRVVELSPLKGSVSWTGK 286 286 286 286 289 299 2147641 2147671 2147686 2148919 2148926 2148937 PVSYYLHTIDRTI]gtgagtatctcgctg(..)ctttcttctttttag[LENYFSSLKNP PVSYYLHTIDRTI ---------------(..)--------------- LENYFSSLKNP 309 319 322 322 322 323 2148967 2148982 2150384 2150391 2150402 2150432 KLR]gtaagtttgtgtgtt(..)ctgctctccttccag[EEQEAARRRQQRESKSNAATP KLR ---------------(..)--------------- EEQEAARRRQQRESKSNAATP 333 336 2150462 336 2150492 336 2150513 337 2150523 347 2150609 2150619 TKGPEGKVAGPADAPM]gtaaggccccagcct(..)ccttgtgtcctccag[DSGAEEEK TKGPEGKVAGPADAPM ---------------(..)--------------- DSGAEEEK 357 367 373 373 373 373 2150644 2150674 2150704 2150734 2150764 2150794 AGAATVKKPSPSKARKKKLNKKGRKMAGRKRGRPKKMNTANPERKPKKNQTALDALHAQT AGAATVKKPSPSKARKKKLNKKGRKMAGRKRGRPKKMNTANPERKPKKNQTALDALHAQT Analysis of gene-finding accuracy and running time Test on 83 small (< 20 000 bp) human genes using mouse homolog: Prot_map: Sne= 73.7 Sn_pe- 93.3 Spe- 71.3 Sn_n= 93.9 Sp_n= 88.6 C=0.9015 Time ~ 1 min Genewise: Sne= 76.4 Sn_pe- 93.9 Spe- 76.4 Sn_n= 94.9 Sp_n=89.4 C=0.9116 Time ~ 90 min Fgenesh: Test on 8 big (> 400 000 bp) human genes using mouse homolog: Prot_map: Sne= 87.9 Sn_pe- 96.0 Spe- 81.3 Sn_n= 94.3 Sp_n= 96.0 C=0.9514 Time ~ 1 min Genewise: Sne= 91.9 Sn_pe- 97.0 Spe- 90.1 Sn_n= 95.1 Sp_n= 97.0 C=0.9599 Time ~ 1200 min Fgenesh: Prot_map mapping of Human protein set of 55946 proteins on chromosome 19 (~59 MB) takes 90 min (best hit for each protein) and 148 min (all significant hits for each protein) Can be used for fast finding of an initial gene set in new genome mapping all known proteins Used for pseudogenes finding as mapping with frameshifts damaging ORFs New Fgenesh+ and Genewise 1) 700 genes with 6508 exons having similar protein with > 90% similarity GeneWISE: Sne= 94.1 Sn_pe- 97.8 Spe- 96.0 Sn_n= 98.9 Sp_n= 99.6 C=0.992 FGENESH+: Sne= 96.9 Sn_pe= 98.5 Spe= 97.9 Sn_n= 99.0 Sp_n= 99.5 C=0.992 2) 18 genes with 116 exons having similar Drosophila protein with identity 28-70% GeneWISE: Sne= 40.5 Sn_pe- 64.7 Spe- 62.7 Sn_n= 68.3 Sp_n= 99.7 C=0.813 Fgenesh+: Sne= 70.7 Sn_pe= 84.5 Spe= 82.0 Sn_n= 84.8 Sp_n= 96.9 C=0.898 5’-exon Observed - 18 Predicted - 14 Correct - 2 (11 by Fgenesh+) Intr: Observed - 80 Predicted - 43 Correct - 38 (59 by Fgenesh+) 3’-exon: Observed - 18 Predicted - 14 Correct - 7 (12 by Fgenesh+) Run time: Fgenesh+ 50 – 1000 times faster than GeneWise Automated Gene Calling at Center for Genome Research MIT Sequencing: 2003/2004 – 6 new yeast genomes 2004/2005 ~ 20 new yeast genomes Gene structures are predicted using a combination of FGENESH, FGENESH+, and GENEWISE (Sanger Institute). the protein used in the previous had >90% amino acid identity to the translated genome (cumulative across sub-alignments), then the GENEWISE call, if valid, was favored over the FGENESH+ call, and was used as the EVIDENCE_GENE 1. If this protein had >80% but less than 90% amino acid identity to the translated genome (cumulative across sub-alignments), then the FGENESH+ call, if valid, was favored over the GENEWISE call, and was used as the EVIDENCE_GENE Examples of usage Fgenesh suit in genome annotations • Grimwood J, Gordon LA, Olsen A, .., Salamov A., Solovyev V., ..., Lukas S. (2004) The DNA sequence and biology of human chromosome 19. Nature, 428(6982), 529-535. Using Fgenesh, Fgenesh+, est_map to annotate genes in Himan cjromosome 19. annotation. · Heiliget al. (2003) The DNA sequence and analysis of human chromosome 14. Nature 421, 601 - 607. FGENESH used for human chromosome 14 annotation. · Hillier et al. (2003) The DNA sequence of human chromosome 7. Nature 424, 157 - 164. Extensive use of FGENESH-2 for human chromosome 7 annotation. Feng et al. (2002) Sequence and analysis of rice chromosome 4. Nature 420, 316 320. FGENESH used for annotation of rice chromosome 4. • Galagan et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859-868. Neurospora genome annotation based on FGENESH and FGENESH+. Lander et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860 - 921. Original paper on sequencing human genome by public consortium also reports use of FGENESH genefinder for genome annotation. Deloukas et al. (2001) The DNA sequence and comparative analysis of human chromosome 20. Nature 414, 865-871. Use of FGENESH for annotation of human chromosome 20. Yu et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92. Rice genome sequencing and annotation project used FGENESH as primary source of gene predictions. Holt et al. (2002) The Genome Sequence of the Malaria Mosquito Anopheles gambiae. Science 298: 129-149. Use of FGENESH for annotation of Anopheles genome. Canonical and Non-canonical splice sites SpliceDB (Burset, Seledtsov, Solovyev, NAR 1999,2000) GT-AG: 99.24% a) GC-AG: 0.69% AT-AC: 0.05% other sites: 0.02% GT-AG group (canonical splice sites): 22199 examples M70A60G80|GTR95A71G81T46 Y73Y75Y78Y79Y80Y79Y78Y81Y86Y86NC71AG|G52 b) GC-AG group: 126 examples M83A89G98|GCA87A84G97T71 c) AT-AC group: 8 annotated examples + 2 examples recovered from annotation errors S90|ATA100T100C100C100T100T90T70 T70G50C70NC60AC|A60T60 Gene prediction is usually done with only standard splice sites Additional sources of genes • • • • • Identified with synteny data help Non canonical splice sites Alternatively spliced Alternative promoters Alternative poly-A Additional studies of the above topics will update the current gene collections Exon-based syntheny 1. Run Gene-finding annotation pipeline for each genome 2. Select chains of similar exons between 2 genomes comparing coding exons by Blast 95% in agreement with filtered genome alignments Brudno et al.(2004) Automated Whole-Genome Multiple Alignment of Rat, Mouse, and Human Genome Research Journal, 14(4):685-692. Pseudogene finding using Prot_map 54408308 54408560 54408568 54408581 54408611 54408641 nnnnnnnn(..)nnnnnnnnnnnnnag[KEFDFESANAQFNKEEMGREFHNKLKLKEDKL --------(..)--------------- KDFDFESANAQFNKEEIDREFHNKLKLKEDKL 134 134 134 136 146 156 54408671 54408701 54408731 54408761 54408791 54408821 EKEEKPVNGEDKGDSGVDTQNSEGHADEEDALGPNCFYDQTKSSFDNISGDDNRERRPTW EKQEKPVNGEDKGDSGVDTQNSEGNADEEDPLGPNCYYDKTKSFFDNISCDDNRERRPTW 166 176 186 196 206 216 54408851 54408881 54408911 54408939 54408967 54408976 AEGRRLNAETFGIPLCPNRGHGGYRGRGaGLGFHGGRGRg]gtggcagaagtggta(..) AEERRLNAETFGIPLRPNRGRGGYRGRG-GLGFRGGRGR- ---------------(..) 226 236 246 255 264 264 Pseudogene finder • Generation pseudogene candidates: • Run script finding genes having almost identical coding proteins (or part of them) with lesser number introns (or without introns). • Run prot_map mapping Human (mammalian) proteins and selecting damaged ones • Selecting pseudogenes using additional features: like poly_A tail, ratio ks/kn Development of eukaryotic promoter recognizer In group of TSS programs Table 7. Selected characteristics of promoter sequences used by TSSW programs for TATA+ and TATA- promoters. Characteristiscs D2 for TATA+ promoters D2 for TATA- promoters •Hexaplets -200 - -45 2.6 1.4 (-100 - -1) •TATA box score 3.4 0.9 •Triplets around TSS 4.1 0.7 •Hexaplets +1 - +40 0.9 •Sp1-motif content 0.9 •TATA fixed location 0.7 •CpG content 1.4 0.7 •Similarity -200 - -100 0.3 0.7 •Motif Density(MD) -200 - +1 4.5 3.2 •Direct/Inverted MD-100 - +1 4.0 3.3 ( -100 - -1) Total Maxalonobis distance 11.2 4.3 Number promoters/non-promoters 203/4000 193/74000 Results of promoter search on genes with known mRNAs by different promoter-finding programs. Reproduced from Liu and States (2002) Genome Research 12:462-469. Accuracy of prediction by TSSP on plant genomic sequences Selected known genomic regions upstream of CDS True positives 92% Total number of False positives for 40 TATA promoters: 22 (1 per 3648 bp) True positives 95% Total number of False positives for 25 TATA –less promoters: 15 (1 per 3300 bp) For every class (TATA and TATA-less) promoters only one predicted TSS with highest score in an interval of 300 bp was taken during the search. tssp Wed Jul 10 02:52:32 EDT 2002 >gi|1902902|dbj|AB001920.1| Oryza sativa (japonica cultivar-group) gene for phos Length of sequence5871 Thresholds for TATA+ promoters - 0.02, for TATA-/enhancers - 0.04 2 promoter/enhancer(s) are predicted Promoter Pos: 1522 LDF- 0.13 TATA box at 1488 18.93 Enhancer Pos: 1597 LDF- 0.12 Transcription factor binding sites/RegSite DB: for promoter at position 1522 1468 (-) RSP00004 tagaCACGTaga 1459 (+) RSP00010 cACGTG 1456 (+) RSP00011 ctccACGTGgt 1461 (+) RSP00016 caTGCAC 1468 (-) RSP00016 caTGCAC 1256 (-) RSP00026 gcttttgaTGACtTcaaacac 1460 (+) RSP00065 ACGTGgcgc 1460 (+) RSP00066 ACGTGccgc 1459 (+) RSP00069 tACGTG 1341 (+) RSP00071 GACGTC 1346 (-) RSP00071 GACGTC 1452 (-) RSP00096 GGTTT 1432 (+) RSP00129 CACGAC 1281 (+) RSP00148 CGACG 1284 (+) RSP00148 CGACG 1315 (+) RSP00148 CGACG 1335 (+) RSP00148 CGACG 1340 (+) RSP00148 CGACG 1365 (+) RSP00148 CGACG 1434 (+) RSP00148 CGACG 1458 (+) RSP00148 CGACG 1347 (-) RSP00148 CGACG 1474 (+) RSP00162 ACACccGagctaaccacaac 1348 (+) RSP00241 CGGTCA 1387 (+) RSP00339 RTTTTTR 1264 (-) RSP00397 AGTGGCGG 1268 (+) RSP00422 ACCGAC 1459 (+) RSP00423 GACGTG 1464 (-) RSP00424 CACGTC 1369 (-) RSP00431 rdygRCRGTTRs 1278 (-) RSP00432 cVacGGTaGGTgg 1249 (-) RSP00436 TTGACT 1260 (+) RSP00463 atttcatggCCGACctgcttttt 1260 (+) RSP00464 acttgatggCCGACctctttttt 1260 (+) RSP00465 aatatactaCCGACcatgagttct 1265 (+) RSP00466 actaCCGACatgagttccaaaaagc Genes with predi cted TSS 22 D is t a n c e b e t w e e n P r e d ic t e d a n d a n n o t a t e d T S S 4 -5:-1 -6:-20 0 +1:+5 2 1 -37 -144 1 5 Predicted TSSs relative to annotated TSS (0) Figure 2. Localization of the predicted nearest TSS in relation to the known TSSs for 35 of 40 genes with the annotated TATA promoters. PromH with ortologous sequences 753 ****** ******* ****** 866 GTGGGgCTA-TTTTAaGcaCAGCcTCTtGGcCTgCACactcccctggcccccagCCcCCaGCaGcTCaGCtACTGGTcACCTGCC---------ACCgCCTGGAATGCTGATTGGCAGTTgGct GTGGGaCTAtTTTTAtGtcCAGCtcCTcGGaCTaCAC----------------cCCaCCcCCtGtTCtGCcACTGGTtgCCTGCCtctgcctgtACCtCCTGGAATGCTGATTGGCAGTTaG-987 1094 TATA(-26) TSS(+1) 867 ******** 951 GGggtGgGTGGGGGCTGGGAAGACacTaTTATAAAGCtgggAGtG-TtgGGaAGCAGCcGTCcCC-----gTCCaGaGTCCtCTGtggtCC . . .CDS(963) GGctgGaGTGGGGGCTGGGAAGAC-—TgTTATAAAGCctaaAGgGcTaaGGgAGCAGCtGTCaCCtggagcTCCtGcGTCCcCTGcccaCC CDS(1182) 1095 1181 TATA(-28) TSS(-1) Fgenesb_annotator - Bacterial Gene/Operon Prediction and Annotation Pipeline FGENESB is a new complex package for annotation of bacterial genomes. Its gene prediction algorithm is based on Markov chain models of coding regions and translation and termination sites. Operon models are based on distances between ORFs, frequencies of different genes neighboring each other in known bacterial genomes, predicted promoters and terminators The parameters of gene prediction are self-learning, so the only input necessary for annotation of new genome is a sequence. Fgenesb accuracy on difficult sets Sn (exact predictions) Sn (exact+overlapping predictions) 123set: Glimmer GeneMarkS FgenesB 57.0% 82.9 89.3 91.1 91.9 98.4 72set: Glimmer GeneMarkS FgenesB 57.0% 88.9 91.5 91.7 94.4 98.6 51set: Glimmer GeneMarkS FgenesB 51.0% 90.2 92.0 88.2 94.1 98.0 rRNA and tRNA annotation STEP 1. Finds all potential ribosomal RRNA genes using BLAST against bacterial and/or archaeal RRNA databases. and masks detected RRNA genes. STEP 2. Predicts tRNA genes using tRNAscan-SE program. Inside bactg_ann.pl - run tRNAscan-SE and masks detected TRNA genes . Genes and Operon identification STEP 3. Initial predictions of long, slightly overlapping ORF that are used as a starting point for calculating parameters of predictions. Iterates until stabilizes. Generates parameters such as 5th-order in-frame Markov chains for coding regions, 2nd-order Markov models for region around start codon and upstream RBS site, Stop codon and probability distributions of ORF lengths. Protein coding genes prediction STEP 4. it predicts operons based only on distances between predicted genes. Annotate genes comparing with databases of known proteins STEP 5. Runs blastp for predicted proteins against COG databasecog.pro and annotate by COGs descriptions STEP 6. Run blastp against NR for proteins having no COGs hits And annotate by NR descriptions. Promoters and Terminators prediction and improvement of operons assignment STEP 7. Uses information about conservation of neighbor gene pairs in known genomes to improve operon prediction. STEP 8. predicts potential promoters (tssb) and terminators (bterm) in the corresponding 5'-upstream and 3'-downstream regions of predicted genes. Tssb- bacterial promoter prediction (sigma70), using dicriminant function with characteristics of sequence features of promoters (such as conserved motifs, binding sites and etc) Bterm - prediction of pho-independent terminators as hairpins, with energy scoring based on discriminant function of hairpin elements. STEP 9. refines operon predictions using predicted promoters and terminators as additional evidences. Fgenesb_annotator output: 1 + + + + + + + + + CDS Term Prom CDS Term Prom CDS CDS CDS 407 1786 1847 1926 3074 3105 3193 3418 4578 - 1747 1823 1906 3065 3122 3164 3405 4545 6506 + + + Term Prom CDS 6516 6512 6595 - 6551 6571 9066 4.7 2.3 2957 Term + SSU_RRNA ribosomal RNA # Bacillus cereus + TRNA + TRNA + LSU_RRNA ribosomal RNA # Bacillus 7 3 Op 1 . CDS + 5S_RRNA 5S ribosomal RNA # Bacillus 8 3 Op 2 . CDS 9 3 Op 3 . CDS Prom 9067 9308 - 9098 10861 3.4 100.0 # AY138279 [D:1..1554] # 16S 10992 11077 11233 - 11068 11152 14154 101.2 93.9 99.0 # Ile GAT 0 0 # Ala TGC 0 0 # AF267882 [D:1..2922] # 23S 14175 14205 - 14363 14315 14353 15170 15373 - 15249 15352 15432 2 1 Op 1 Op 1 2 21/0.000 3/0.019 3 4 2 Op 1 4/0.002 2 Op 2 4/0.002 2 Op 3 16/0.000 (topoisomerase II) B subunit 6 2 Op 4 . (topoisomerase II) A subunit + 1311 ## COG0593 ATPase involved in 3.2 10.5 1237 ## COG0592 DNA polymerase 9.1 4.0 278 ## COG2501 Uncharacterized A 899 ## COG1195 Recombinational D 2148 ## COG0187 DNA gyrase ## COG0188 DNA gyrase 158 97.0 # AE017026 [D:165635..165750] 351 99 6.9 ## Similar_to_GB Comparison of 2 bacterial genomes GenomMatch aligns 2 bacterial genomes 2 MB x 2MB ~ 30 sec Figure1 Nature (2004) 428 (6978) , p. 37 – 43 Annotation of new bacteria New drugs Annotation of bacterial communities DNA from Specific sources (not growing in Labs) Oceans/Acid mines/agriculture (with mix of 100s species) New ferments • Main Collaborators: • Asaf Salamov, Igor Seledtsov, • Ilham Shahmuradov