Results Comparison of FEAP and ABAQUS

Download Report

Transcript Results Comparison of FEAP and ABAQUS

Antibiotics in Our Streams
How Much is There and Where Are They Coming From?
Colorado State University
Kenneth Carlson
([email protected])
Sung-Chul Kim
Shinwoo Yang
October, 2005
Annual Antimicrobials Usage
2002 Animal Health Industry Sales
Total Pounds
(Thousands)
Percent of Total (%)
3,000
1,500
9
5
2,000
24,500
6
77
Others
Companion Animals
1,000
3
Total Antimicrobials Use
32,000
100
Human Uses
Disease Treatment
Other Human Use
Livestock Uses
Therapeutic – All Species
Nontherapeutic – Cattle, Swine, Poultry
Sources, Distribution and Sinks of
Pharmaceuticals in the Environment
Human Used Pharmaceuticals:
STP as point source
Veterinary Pharmaceuticals:
Manure as fertilizer  Soil 
Surface Runoff or
Leaching through sub-surface
Risk to Drinking Water and
Watershed Ecology
Sources from: K Kummerer, Pharmaceuticals in the Environment, Springer
Main Objectives



Monitoring Occurrence of Human and Animal
Antibiotics in Water and Sediment
Monitoring Occurrence in Animal Waste Lagoons and
anure
Evaluating Transport Pathways and Mechanisms
Evaluating Fate of Antibiotics and Waste Management
Practice (BMPs)

M
Tetracyclines
R2
R4 R3
7
9
11
10
8
D
12
C B 17
A
15
14
13
R1 H 3C N CH 3
3 OH
5
4
6
1
OH
OH
O
O
OH
O
NH2
2
16
a
Compounds
R1
R2
R3
R4
Oxytetracycline(OTC) OH
OH
CH3
H
Chlortetracycline(CTC) H
OH
Minocycline(MNC)
Demeclocycline(DMC)
Melocycline(MCC)
Tetracycline(TC)
Doxycycline(DXC)
H
OH
CH2
OH
H
H
H
OH
H
OH
pK1
3.3
3.3
pKa
pK2
7.3
7.4
Cl
H
H
CH3
CH3
Cl
Cl
H
H
pK3
9.1
9.3
2.8
5.0
7.8
3.3
3.5
7.7
7.7
9.7
9.5
Sulfonamides
O
R N S
H
O
NH2
R
Name
R
pKa
Name
S
Sulfathiazole
(STZ)
Sulfamethoxazole
(SMX)
N
N O
CH3
SulfachloroSulfamerazine
(SMR)
pyridazine
N
N
CH3
(SCP)
Sulfadimeth-
CH3
Sulfamethazine
(SMT)
Cl
N
N
CH3O
oxine
N
N
CH3
N
N
(SDM)
CH3O
Macrolides
CH 3
O
H 3C
CHO
HO
N CH 3
HO
O
O
O
CH 3
CH 3
OH
O
H 3C
CH 3
O
HO
O
O
OCH3
OCH3
OH
CH 3
CH 3
C 2H 3
O
Tylosin
CH 3
H 3C
O
HO
OH
H 3C
HO
O
H 3C
CH 3
O
O
C
CH 3
H
CH 3
OCH3
O
CH 3
O
Erythromycin
H 3C
H 3CO-H 2C-H 2C-O-H 2C-O-N
H 3C
HO
HO
O
CH 3
OH
CH 3
O
C
CH 3
OCH3
CH 3
O
CH 3
H
CH 3
O
HO
H
N
CH3
H 3C
CH 3
O
CH 3
CH 3
OH
CH3
HO
H
N
CH 3
O
Roxithromycin
O
CH 3
OH
Ionophores
HO
11
10
7
8
H3C
CH3O
6
5
O
H
4
O
9
3
H
12
O
H3C
14
15
18
CH3
H
13
23
17 20
16
O
O
CH3
19
22
21
H O
CH3
OH
CH3
2
1
CH3
24
25
CH2OH
CH3
HO
Monensin
CH3
5
H5C2
O
6
3
2
1
15
H3C
O
OH
4
H
7
O
OH
8
9
H
CH3
12
10
14
CH3
17
13
11
H
CH3
16
O
H3C
19
OH
20
21
22
O
H3C
H5C2
23
4
6
3
7
H
26
25
O
2
1
24
29
O
27
28
1 5
H3C
O
OH
18
O
CH3
5
CH3
H
O
OH
8
9
H
CH3
1 2
1 0
1 4
1 3
1 1
CH3
H
CH3
O
CH3
1 6
1 7
1 9
1 8
OH
2 0
O
2 1
2 2
O
H3C
H
OH
2 3
2 4
2 6
2 5
O 29
2 7
2 8
CH3
CH3
CH3
Salinomycin
OH
CH3
Naracin
Main Objectives



Monitoring Occurrence of Human and Animal
Antibiotics in Water and Sediment
Monitoring Occurrence in Animal Waste Lagoons and
anure
Evaluating Transport Pathways and Mechanisms
Evaluating Fate of Antibiotics and Waste Management
Practice

M
Solid Phase Extraction (SPE) Procedure
HLB
3mL MeOH
3mL HCL(5%,v/v)
3mL DI
Flow Rate
2mL/min
33mL
DI Water
22.5mL
MeOH
Schematic Diagram of the Sediment Sample Preparation
Sample
(Air dried)
Pre-Extraction
TCs and SAs:
Mcllvaine Buffer Solution (pH 4.0)
MLs and IPs:
Ammonium Hydroxide Buffer (pH 10.0)
Clean-up
(SPE)
Evaporation and Reconstitution
HPLC/MS/MS Analysis
Nitrogen Gas Water Bath (50C)
50l Sample + 70l mobile phase A
High Performance Liquid Chromatography Tandem
Mass Spectrometry (HPLC/MS/MS)
Equipment
HP 1100 HPLC equipped with Thermostatted Auto Sampler and
variable UV detector
ThermoFinnigan LCQ Duo ion trap mass spectrometer
Xterra MS C18 (2.150mm, 2.5m pore size, end-capped)
Optimized HPLC
Condition
Column
Temperature
(C)
Flow Rate
(ml/min)
Tetracyclines (TCs)
Sulfonamides (SAs)
15
0.32
A: 96% + B: 4%: 0 (min)  A: 70% + B: 30%: 29 (min) 
A: 96% + B: 4%: 30 (min)
Macrolides (MLs)
45
0.32
A: 80% + B: 20%: 0 (min)  A: 65% + B: 35%: 13 (min) 
A: 80% + B: 20%: 14 (min)
Ionophore Polyethers
(IPs)
15
0.25
A: 50% + C: 50%: 0 (min)  A: 10% + C: 90%: 1 (min) 
A: 50% + C: 50%: 20 (min)
Optimized MS
Condition
Nitrogen Gas used for drying and nebulizing
Spray Voltage – 4.5V
Capillary Voltage – 21V
Capillary Temperature - 165°C
Mobile Phase Conditions:
Mobile Phase A (99.9% DI+ 0.1% Formic Acid)
Mobile Phase B (99.9% ACN + 0.1% Formic Acid)
Mobile Phase C (100% MeOH)
Quality Assurance:
Recovery,Limit of Quantification (LOQ)
Detect Response of Spiked Sample prior to SPE
Recovery Ratio =
Recovery
Range (%)
Aqueous
(0.1,1,5 g/L)
Sediment
(1,30,90 g/kg
)
Detect Response of Spiked Sample after SPE
 100
TCs
SAs
MLs
IPs
102 - 124
77 – 124
89 – 114
82 – 117
33 -115
62 - 108
53 - 128
51 - 105
Lowest calibration curve point based on signal/noise 3 (0.01 g/L and 1 g/kg )
Standard Deviation  Student’s t-variate for one sided t-test at the 95% confidence interval
LOQ
TCs
SAs
MLs
IPs
Aqueous
(g/L)
0.01 – 0.04
0.01 – 0.02
0.01 – 0.03
0.012 – 0.027
Sediment
(g/kg)
0.3 – 2.5
0.3 – 1.7
0.5 – 1.7
0.4 – 3.6
Sampling Sites Description
Sampling Site 1:
Pristine watershed
Sampling Site 2:
Rural landscape
Sampling Site 3:
Urban influenced
Wastewater Reclamation Facility
Sampling Site 4:
Heavily agricultural influenced area
Sampling Site 5:
Both urban and agricultural
influenced area
 Sampling Sites  Dairy ■ Feedlots ▲ Ranches ★USGS Gages
Site 2 - Aqueous
0.06
0.05
Site 2
May-03
April-04
August-04
February-05
Site 2
0.04
Concentration (g/L)
Concentration (g/L)
0.05
0.04
0.03
0.02
May-03
April-04
August-04
February-05
0.03
Local small farm
might contribute
the detection of
Narasin
0.02
0.01
0.01
0.00
0.00
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
SMT
Tetracyclines
SCP
SMX
Sulfonamides
0.030
0.04
May-03
April-04
August-04
February-05
0.03
0.02
Site 2
0.025
Concentration (g/L)
Site 2
Concentration (g/L)
No observed
concentration
in May and April
except Narasin
0.020
May-03
April-04
August-04
February-05
0.015
0.010
0.01
0.005
0.00
0.000
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
SDM
Higher concentration
in February with
high detect frequency
For TCs and SAs
Site 3 - Aqueous
May-03
April-04
August-04
February-05
Site 3
0.08
0.06
0.04
0.30
Concentration (g/L)
Concentration (g/L)
0.10
Higher concentration
of human used
antibiotics or
antimicrobials
0.35
0.12
0.02
Site 3
0.25
0.20
High concentration of
ETM-H2O in low flow
and cold temperature
0.15
0.10
0.05
0.00
0.00
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
SMT
Tetracyclines
SMX
Sulfonamides
0.5
0.04
Site 3
0.4
May-03
April-04
August-04
February-05
0.3
0.2
Concentration (g/L)
Site 3
Concentration (g/L)
SCP
0.03
May-03
April-04
August-04
February-05
0.02
0.01
0.1
0.0
0.00
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
SDM
Site 4 - Aqueous
0.08
1.4
May-03
April-04
August-04
February-05
Site 4
1.0
0.8
0.6
0.4
Site 4
Concentration (g/L)
Concentration (g/L)
1.2
0.06
3 IPs were detected
0.04
0.02
0.2
0.0
0.00
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
SMT
Tetracyclines
SMX
Sulfonamides
0.10
0.035
Site 4
Site 4
0.030
May-03
April-04
August-04
February-05
0.06
0.04
Concentration (g/L)
0.08
Concentration (g/L)
SCP
0.025
May-03
April-04
August-04
February-05
0.020
0.015
0.010
0.02
0.005
0.00
0.000
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
SDM
Site 5 - Aqueous
0.4
Site 5
0.14
0.3
Concentration (g/L)
Concentration (g/L)
Higher concentration
of MNS in May
0.16
0.2
0.1
Site 5
0.12
0.10
0.08
0.06
0.04
0.02
0.0
0.00
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
Tetracyclines
SMT
SCP
SMX
Sulfonamides
0.25
0.04
Site 5
0.20
May-03
April-04
August-04
February-05
0.15
0.10
Concentration (g/L)
Site 5
Concentration (g/L)
SDM
May-03
April-04
August-04
February-05
0.03
0.02
0.01
0.05
0.00
0.00
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
Site 2 - Sediment
50
Site 2
6
May-03
April-04
August-04
February-05
Concentration (g/kg)
Concentration (g/kg)
40
No measurement for
MLs and IPs
in February
7
30
20
5
Site 2
May-03
April-04
August-04
February-05
More frequent detection
compared to aqueous
4
3
2
10
1
0
0
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
SMT
Tetracyclines
SCP
SMX
Sulfonamides
3.0
14.00
10.00
8.00
6.00
4.00
2.5
Concentration (g/kg)
May-03
April-04
August-04
February-05
12.00
Concentration (g/kg)
Site 2
Site 2
2.0
May-03
April-04
August-04
February-05
1.5
1.0
0.5
2.00
0.00
0.0
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
SDM
Site 3 - Sediment
Site 3
80
60
40
Site 3
Concentration (g/kg)
May-03
April-04
August-04
February-05
100
Concentration (g/kg)
Higher concentration
In February for TCs and
SAs
8
120
6
No IPs except Narasin
4
2
20
0
0
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
SMT
Tetracyclines
SCP
SMX
Sulfonamides
30
4
Site 3
Site 3
May-03
April-04
August-04
February-05
20
15
10
Concentration (g/kg)
Concentration (g/kg)
25
3
May-03
April-04
August-04
February-05
2
1
5
0
0
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
SDM
Site 4 - Sediment
16
30
Site 4
20
Concentration (g/kg)
Concentration (g/kg)
14
May-03
April-04
August-04
February-05
25
15
10
Higher concentration
in August for SMT,
ETM-H2O, and IPs
Site 4
12
10
8
High concentration
Of CTC, STZ, and TLS
6
4
5
2
0
0
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
Tetracyclines
SCP
SMX
SDM
Sulfonamides
18
35
Site 4
May-03
April-04
August-04
February-05
14
12
10
8
6
Site 4
30
Concentration (g/kg)
16
Concentration (g/kg)
SMT
May-03
April-04
August-04
February-05
25
20
15
10
4
5
2
0
0
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
Site 5 - Sediment
80
8
Site 5
60
Concentration (g/kg)
Concentration (g/kg)
Site 5
40
20
0
6
4
2
0
TC
CTC
OTC
DMC
MCC
DXC
STZ
SMR
Tetracyclines
SCP
SMX
SDM
Sulfonamides
14
35
Site 5
Site 5
May-03
April-04
August-04
February-05
10
8
6
4
2
30
Concentration (g/kg)
12
Concentration (g/kg)
SMT
May-03
April-04
August-04
February-05
25
20
15
10
5
0
0
ETM-H2O
RTM
Macrolides
TLS
MNS
SLM
Ionophore Polyethers
NRS
Combination of human used
And veterinary medicines
Summary of Measured Concentration at watershed
Water
Compounds
Sediment
Frequency of
Detection (%)
Detected Concentration (g/L)
Minimum
Frequency of
Detection (%)
Mean
Standard
Deviation
Maximum
TC
42
0.02
0.01
CTC
45
0.08
OTC
37
DMC
Detected Concentration (g/kg)
Mean
Standard
Deviation
Maximum
Minimum
0.03
0.01
80
17.9
24.3
102.7
1.1
0.07
0.21
0.01
80
10.8
9.2
30.8
1.1
0.18
0.40
1.21
0.01
80
14.8
13.9
56.1
2.4
30
0.03
0.01
0.05
0.02
80
6.9
5.5
23.6
2.1
MCC
47
0.03
0.03
0.10
0.01
80
24.3
21.5
72.0
4.3
DXC
33
0.02
0.01
0.05
0.01
65
15.7
10.1
38.9
2.2
STZ
33
0.01
0.01
0.03
0.01
70
3.3
2.3
5.4
1.3
SMR
30
0.02
0.02
0.06
0.01
15
4.8
2.3
6.8
2.3
SMT
10
0.02
0.00
0.02
0.02
25
4.7
5.2
13.7
1.0
SCP
5
0.03
0.00
0.03
0.03
25
2.7
0.5
3.2
1.9
SMX
60
0.11
0.09
0.32
0.04
25
1.6
0.3
1.9
1.2
SDM
33
0.02
0.02
0.04
0.01
30
3.8
2.1
6.8
1.7
ETM-H2O
65
0.12
0.13
0.45
0.02
75
10.0
7.6
25.6
1.3
RTM
0
0.00
0.00
0.00
0.00
30
2.1
1.9
5.9
1.1
TYL
5
0.05
0.00
0.05
0.05
53
3.0
2.8
9.3
1.1
MNS
50
0.009
0.001
0.036
0.002
40
13.8
11.2
31.5
2.4
SLM
43
0.002
0.002
0.007
0.001
40
9.1
11.0
30.1
1.8
NRS
37
0.018
0.016
0.038
0.001
40
6.4
4.2
16.3
2.8
Pseudo Partitioning Coefficient
Pseudo Partitioning Coefficient (L/kg) =
Compounds
Sediment Concentration (g/kg)
Aqueous Concentration (g/L)
Range
Average
Reference
CTC
623 - 1160
891
670 – 1620
SMX
20 - 28
24
0.6 – 4.9
ETM-H2O
72 - 397
243
8.3 – 128
1000 - 2050
1525
-
MNS
PPC: MNS > CTC > ETM-H2O > SMX
Sources
from: J Tolls, Environmental Science and Technology (2001), 35, 3397 - 3406
Animal Waste Operations
Operation
Lagoon Water
Manure
Dairy
7
7
Beef
6
5
Hog
10
5
Sheep
2
4
Turkey
0
2
Animal Waste Operations
Concentration in lagoon water
Samples
OTC
ug/L
CTC
ug/L
TC
ug/L
MNS
ug/L
MDL
1.79
1.33
2.09
0.86
Dairy A
Dairy B
Dairy C
Dairy D
Dairy E
Dairy F
Dairy G
Beef A
Beef B
Beef C
Beef D
Beef E
Beef F
Hog A
Hog B
Hog C
Hog D
Hog E
Hog F
Hog G
Hog H
Hog I
Hog J
Sheep 1
Sheep 2
5.04
17.46
1.71
4.78
9.89
11.48
10.62
2.25
3.27
51.80
2.08
3.53
3.02
11.30
1524.82
1310.23
7.53
2.36
1193.00
12.77
135.43
99.52
9498.69
9450.37
6.65
8.05
1.60
2.95
2.41
7.44
7.85
6.94
8.61
2.31
2.52
12.93
6.23
6.47
2.54
16.95
14.40
26.47
24.83
2.58
2.40
6.29
1.56
12.45
101.34
54.56
502.34
75.32
43.27
395.76
Animal Waste Operations
Concentration in lagoon water
Samples
STZ
ug/L
SCP
ug/L
SDM
ug/L
SMR
ug/L
SMT
ug/L
SMX
ug/L
MDL
0.81
0.87
1.03
1.02
0.94
0.58
Dairy A
Dairy B
Dairy C
Dairy D
Dairy E
Dairy F
Dairy G
Beef A
Beef B
Beef C
Beef D
Beef E
Hog A
Hog B
Hog C
Hog D
Hog E
Hog F
Hog G
Hog H
Hog I
Hog J
Sheep 1
Sheep 2
3.83
4.41
1.01
16.80
2.34
1.02
0.95
2.91
0.61
0.59
1.76
28.04
1.82
2.43
1.44
3.83
2.14
0.96
0.64
1.17
0.70
2.07
4.43
1941.53
1.77
3.80
3.88
2079.27
2430.30
66.07
4.53
270.73
280.58
1.51
64.23
132.68
2.96
2.70
1.59
2.31
1.12
1.26
9.44
8.05
1.19
2.47
0.60
Animal Waste Operations
Concentration in lagoon water
Samples
TLS
ug/L
ETM-H2O
ug/L
RTM
ug/L
MDL
0.46
0.65
0.59
Dairy A
Dairy B
Dairy C
Dairy D
Dairy E
Dairy F
Dairy G
Beef A
Beef B
Beef C
Beef D
Beef E
Beef F
Hog A
Hog B
Hog C
Hog D
Hog E
Hog F
Hog G
Hog H
Hog I
Hog J
Sheep 1
Sheep 2
1.16
4.05
0.51
9.60
19.53
5.88
4.84
102.52
0.90
11.69
27.88
37.59
36.78
3.05
19.20
0.74
7.95
4.58
7.39
0.68
0.67
0.69
43.66
0.63
12.58
60.01
5.04
2.27
0.46
3.76
4.25
1.09
1.80
1.40
1.06
Animal Waste Operations
Concentration in liquid manure
Samples
OTC
ug/kg
CTC
ug/kg
TC
ug/kg
MNS
ug/kg
MDL
2.43
1.93
2.27
1.96
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Beef/Fresh
Beef/Fresh
Beef/Fresh
Beef/Fresh
Beef/Fresh
Hog Fresh
Hog Fresh
Hog Fresh
Hog Fresh
Hog Fresh
Sheep Fresh
Sheep Fresh
Sheep Fresh
Sheep Fresh
Turkey/Old
Turkey/Old
16.32
42.43
8.87
45.00
33.38
38.62
356.62
1045.52
39.01
83.00
4.58
585.34
10.28
184.97
30.71
128.44
1115.56
394.06
284.15
808.12
343.53
26.45
3071.49
10896.72
26.91
37.78
15.73
5130.42
620.92
20.59
6.05
22.93
8.29
11.94
91.73
1076.27
372.78
176779.21
172.33
5.90
34.04
175832.67
18.69
2.47
5.58
31.34
380.77
234.49
23.88
23138.27
634.89
148.60
22837.04
3622.96
5.07
9990.72
9.64
160.53
308.70
34.56
78.53
345.67
542.57
983.56
456.30
36.78
Animal Waste Operations
Actual concentration in liquid manure
Samples
STZ
ug/kg
SCP
ug/kg
SDM
ug/kg
SMR
ug/kg
SMT
ug/kg
SMX
ug/kg
MDL
1.35
1.43
1.54
1.17
1.62
1.08
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Dairy/Fresh
Beef/Fresh
Beef/Fresh
Beef/Fresh
Beef/Fresh
Beef/Fresh
Hog Fresh
Hog Fresh
Hog Fresh
Hog Fresh
Hog Fresh
Sheep Fresh
Sheep Fresh
Sheep Fresh
Sheep Fresh
Turkey/Old
Turkey/Old
16.51
7.04
11.49
8.57
24.32
46.39
7.85
1.75
1.67
1.89
3.04
9.53
647.85
2.64
2.74
12.77
127.47
19.70
257.78
7.88
14.75
2.18
6.31
3.57
1.47
7.28
2.49
5.97
1.72
17.40
4.76
36.69
12.96
4.19
10.19
31.35
5.51
12.11
2.82
8.43
3.01
11.67
3.25
5.30
419.21
1.82
248.42
69.86
6.17
3.07
3.19
5.73
38.38
3.59
2.71
1.81
1.50
1.74
1.37
1.96
2.01
2.73
3.18
1.80
6.47
1.68
Column Leaching Experiments
Purposes




Evaluating potential mobility of antibiotics
Estimating partition coefficient (Kd)
Comparing surface runoff field experiment
Expected Results



Mobility: Sulfonamides > Macrolides > Ionophores >
Tetracyclines
Kd values: Tetracyclines > Ionophores > Macrolides >
Sulfonamides
Mass Loading From Local Irrigation Ditches
to Watershed
Inflow
TC: 153.4
CTC: 266.4
Outflow
TC: 2.5
CTC: 2.9
Mass Flux
TC: 1.6
CTC: 1.1
Inflow
STZ: 6.2
SMT: 151.3
Outflow
STZ: 0.3
SMT: 3.0
Mass Flux
STZ: 4.6
SMT: 2.0
Inflow
ETM-H2O: 48.2
TLS: 118.3
Outflow
ETM-H2O: 2.1
TLS: 4.2
Mass Flux
ETM-H2O: 4.4
TLS: 3.5
Inflow
MNS: 13.0
SLM: 6.0
NRS: 12.6
Outflow
MNS: 0.3
SLM: 0.3
NRS: 0.6
Mass Flux
MNS: 1.9
SLM: 5.0
NRS: 4.5
ID
Site name or
description
Averaged Mean
Stream Flow (cfs) a
A
Eaton Canal
195
B
Local Ditch
-
C
Eaton Canal
195
D
Graham Seep Ditch
3
E
Greeley #2 Canal
119
F
Graham Seep Ditch
3
G
Eaton Canal
195
H
Greeley #2 Canal
119
I
Greeley #2 Canal
119
M
Agricultural Area
45
N
Urban and agricultural
combined area
a
Unit of Inflow and Outflow: ton/yr, Mass Flux: %
Averaged mean stream flow of canal or ditch was
provided by Cache la Poudre River water commitioner
and river mean stream flow was adapted from U.S.
Geological Survey (USGS). Unknown data is not shown.
Conclusions

Occurrence frequency high in semi-arid watershed

Sediment-partitioned concentrations much higher

With different site characteristics and land use,
concentration of human and animal antibiotics varies
significantly – BMPs can be developed

Surface runoff may contribute to the release of
antibiotics or antimicrobials to the environment

Local irrigation ditches might act as intermediate
transport pathways
Acknowledgement
Colorado State University
Dr Amy Pruden
Dr Jessica Davis
Kathy Doesken
Support:
United States Department of Agriculture (USDA)
National Integrated Water Quality Program
Integrated Research, Education, and Extension Competitive Grants Program