Voice Evacuation

Download Report

Transcript Voice Evacuation

Voice Evacuation
an introduction
Please note:
This presentation has been formatted to enable easy download and
email and is not recommended for large screen display.
For a full version please email [email protected] and we
will be happy to send you a CD.
Voice Evacuation
• Research has proven that in an emergency people will react
without confusion or panic if they receive a clear, intelligible
message.
• Bells and sounders only give a warning, they do not indicate
the nature of the emergency.
• Phased evacuation using clear, easily understood, prerecorded messages ensures that even untrained personnel are
evacuated speedily and efficiently.
Voice Evacuation
what is it?
• An effective alternative to standard bells and sounders – using the
spoken word for evacuating premises during an emergency.
• Often referred to as ‘voice alarm’, ‘VA’ or ‘VE’.
• Needs to be fully compliant with BS5839-8, BSEN54-16 and
EN60849.
• Serves as a general public address system during normal
circumstances.
• Provides companies with facilities such as advertisement injection,
background music, timed message announcements – and much
more.
Voice Evacuation
in brief
• A ‘building’ is ‘divided’ into separate areas (zones).
• Zones can be ‘spoken to’ (broadcast to) individually, several at
once or as an ‘all call’.
• During an emergency people are informed – via the spoken
word – what is happening and what to do.
• Evacuation control is either via pre-recorded messages and/or
via emergency fire microphones.
• The system is fully monitored (BS5839-8), with any faults
reported, so that it will work when needed – during an
emergency.
Voice Evacuation
why do we need it?
• Those most at risk can be evacuated first.
• Phased evacuation can be pre-planned.
• Emergency messages can be stored on the system and
broadcast by automatic or manual means.
• Fire officers/building management can broadcast ‘live’ at any
time.
• Panic is reduced due to the controlled nature of the
evacuation.
• Quite simply: voice alarm helps save lives during an
emergency.
During an Emergency...
..WITHOUT Voice Evacuation
• A ‘break glass’ box or ‘fire detector’ is activated.
• An alarm is sounded – normally a bell/klaxon style alarm.
• Initially, it is usual for people to carry on as normal.
• Vital seconds – or minutes – are lost.
• After a while people become curious and eventually start to
move.
• People habitually exit via the same route they entered – this
may be the longest (or most dangerous) route.
• Unfortunately, such inaction can, and does, end in tragedy.
A Standard Fire Alarm System
..WITH Voice Evacuation
• A ‘break glass’ box or ‘fire detector’ is activated.
• The fire alarm panel activates the voice alarm system messages.
• Emergency messages are broadcast to areas at risk.
• Areas of high risk are informed of any necessary action – ie
‘evacuate’.
• Areas of low risk are ‘alerted’ to the situation – ‘phased evacuation’.
• Real time information may be broadcast by the emergency services
to prevent people moving into danger.
• Result – immediate action – calm, controlled and SAFE evacuation.
Voice Evacuation System
Centralised Voice Evacuation
• Usually offered for single
building installations.
• All loudspeaker lines
derived from a single
location.
Decentralised Voice Evacuation
• Usually offered on site wired installations where a number of
buildings need to be covered.
System Priorities
• A voice alarm system has various inputs, which must be
prioritised. This ensures the most important input (ie fire
officer’s microphone) overrides any other.
• Typical priorities are as follows:
Fire
microphone 1
(all call)
Fire
microphone 2
(zone select)
Evacuation
message
Alert message
Background
music
Spot announcer
(advert
injection)
Paging
microphone
Other
emergency
message
Priority settings on VIGIL EVAS systems can be easily changed to suit individual requirements.
Basic System Elements
Fire Microphone
• Weatherproof enclosure.
• Fist microphone.
• Has top priority – overrides all other
microphones and inputs to the voice
evacuation system.
• Used by firemen/building control to
override emergency broadcasts – either
as a ‘zone select’ or ‘all call’.
• Any other messages being transmitted
to zones will be interrupted when the
fire microphone is activated.
Microphone Controller
• Operated by the designated person to
control the evacuation using voice
announcements – live or recorded.
• Can also be used as a fire or paging
microphone.
• Selects music source.
• Ability to test the system via prerecorded ‘start’ and ‘end’ test messages.
• During an emergency, assumes
‘emergency control mode’ and is given a
higher priority.
Router
• The voice alarm router is connected to the
fire detection system of a building.
• The fire detection system triggers the VA
system to evacuate and alert automatically.
• Provides full system status monitoring and
fault reporting.
• The router receives various inputs including
microphones, spot announcers, etc.
• It outputs the ‘priority’ signal, via the
amplifier(s), to relevant loudspeaker circuits
(zones).
Amplifier
• Receives the input from the microphone
(or other source) (via the router) and
amplifies (broadcasts) it to the relevant
zones.
• Several amplifiers will be built into a
voice alarm rack, with each amplifier
broadcasting to specific zones (circuits)
within the building.
• Available in different power options to
suit system requirements.
Batteries
• A voice evacuation system must work during an emergency –
even if the mains power has failed.
• Backup batteries included in the system must be of a suitable
‘size’.
• Calculations for battery sizes are made at the design stage of a
system.
• Typically, the system is capable of being battery-backed for 24
hours quiescent and 30 minutes at full power (to meet the
requirements of BS5839-8).
Messages
• Flash memory, recordable by client.
• Digital WAV files.
Alert
• CD quality.
• 57 second duration for each
message.
Evac
• Constantly monitored.
Test
• Triggered by fire panel or manually.
Music Input
• A source of music which is installed in the voice alarm rack –
such as an MP3 or CD player.
• Used to broadcast background music to zones selected.
• Typically the lowest priority in a voice alarm system.
• Will be overridden in the event of an emergency.
Phased Evacuation
Typical Office Block or Hotel
ROOF
ROOF
EVACUATE
7th floor
7th floor
alert
6th floor
6th floor
alert
5th floor
5th floor
EVACUATE
4th floor
EVACUATE
3rd floor
3rd floor
EVACUATE
2nd floor
2nd floor
alert
1st floor
1st floor
alert
ground floor
alert
BASEMENT 1
ground floor
GROUND LEVEL
BASEMENT 1
EVACUATE
BASEMENT 2
BASEMENT 2
EVACUATE
The VIGIL2
Voice Evacuation System
•
•
•
•
•
•
Single, four or eight zone.
Lockable IP66 steel enclosure.
Zone status indicators.
Speak now indicator.
Speech volume indicator.
Option to fit ‘processor bypass’ hardwired press-to-talk switch.
• Option to fit flip-top switches to
enable DVA (digital voice
announcement) messages to be
broadcast.
• Fully monitored.
Fire Microphone
BFM400 range
• Available in eight versions – from 8-zone up
to 64-zone.
• Performs as a paging or fire microphone
with an optional ‘all call’ processor bypass
facility.
Microphone
Controller
• LCD displays showing zone name and status.
• Red buttons for emergency messages –
operated by key switch.
• Fault indicators.
• Up to 30 messages available to operator
(stored on EVAS routers).
• Five programmable function keys.
• Fully monitored.
• RJ45/CAT5 connection.
BVRD range
• Operator selects options by simply
touching the screen prompts.
• Graphics can be displayed as either
virtual buttons or as a topographical
layout (pictured).
• All functions: message selection,
zone selection, paging, message
recording, background music, etc –
can be performed from the paging
station.
• Industrial, solid state fan-less
computer (no moving parts.
• High definition LCD display.
Touchscreen
Paging Station
Unitouch
• Eight inputs and seven outputs.
• Inputs 1&2 with processor bypass.
• One failsafe emergency ‘all call’
message.
Router
• Six messages stored in flash memory.
• USB2 port to configure unit/upload
messages, etc.
• Realtime clock – fault logging, history,
night time volume, etc.
• CANBUS ports to connect with modules,
simple rack wiring.
• Parametric EQ on all inputs and outputs.
• Auto amplifier changeover (1 in 10).
DSP-controlled
BVRD2M
• 1U in height.
• Up to five slave units can be added
to one BVRD2M master.
Expansion facilities
• Each BVRD2S adds:
• 12 audio inputs.
• 16 audio outputs.
• 12 messages.
• Each BVRD2SLT adds:
• 6 audio inputs.
• 8 audio outputs.
• 6 messages.
• Mount directly on top of BVRD2M –
connections are made using RJ45.
BVRD2S & BVRD2SLT
slave units
• Four inputs and four outputs.
• One failsafe emergency ‘all call’
message.
• Six messages stored in flash memory.
• Realtime clock – fault logging,
history, night time volume, etc.
• Parametric EQ on all inputs and
outputs.
• Fits alongside a VIGIL2 amplifier and
BVSMP power supply in one 19”
frame.
• Fully monitored.
Mini Router
DSP-controlled
BVRD2M4
• Wall-mountable, stand-alone system,
complete with battery backup.
• All the facilities of the BVRD2M4.
• Up to two VIGIL2 amplifiers can be
fitted (any combination):
• BV225 – 225 Watt single amplifier.
• BV125 – 125 Watt dual amplifier.
• BV050Q – 50 Watt quad amplifier.
• Ideal for decentralised networking or
tenant systems.
• Fully monitored.
• Optional ‘all call’ fire microphone on
front panel.
ECLIPSE3
VA/PA system
• Class D – 80% efficient.
• Compact.
• Sleep mode – automatically
reducing standby requirements
to 50mA per amplifier when
operating on batteries.
• Rated power obtainable from
22V battery supply.
• Over-temperature protection.
• The BV225 can be paralleled.
Amplifiers
BV225, BV125D,
BV050Q
• Enables dual loudspeaker circuits to
connect to a single amplifier.
• Each BVRDADIS unit provides both
A&B circuits for two amplifiers.
DC line monitor/
isolator
• Up to 10 spurs per loudspeaker line.
• The BVRDADIM master unit
connects to the BVRD2M router.
• Up to five BVRDADIS can be
connected to one BVRDADIM.
• Utilises DC line monitoring
techniques, therefore, BEL1 end of
line monitoring is not required.
BVRDADIM & BVRDADIS
• Switch mode power supplies.
• Two individually protected outputs
at 24V (one on the BVSMPLT).
• Built-in deep battery discharge cut
off.
• Standby batteries are continually
‘float charged’.
• A protected output is provided to
power a mixer or auxiliary circuit.
• Several chargers may be paralleled
when used for larger systems.
• Fully monitored.
PSU Charger
BVSMP & BVSMPLT
• Provides digital networking facilities
for the VIGIL2 range.
• Connected in a loop configuration.
• Continues to function in the event of
cabling damage at a single location.
• The network can be copper, fibre or
a combination of both.
• Two RS485 and up to fourteen
concurrent audio channels.
• Network status indicators.
• Up to 126 VIGIL2 EVAS systems can
be digitally networked.
• Fully monitored.
DSP Network
BVRDNET
BVRDCIF & BVRDFIF
The Standards
BS5839-8
• At least two interleaved loudspeaker circuits are required in
order to ensure adequate coverage should one circuit fail
(4,000m2/500 members of the public).
• Cabling for dual circuits must not be contained in one single
sheath.
• Processor controlled system must:
• Have restricted access for system configuration data.
• Not use rotary discs or other moving parts.
• Be monitored i.e. ‘watchdog’.
• The network between subsystems must be monitored in
accordance with requirements (12.1).
BS5839-8
• System monitoring should include the following:
• Normal/standby power.
• Battery chargers.
• Fuses and protective devices.
• Critical signal paths.
• Emergency messages.
• Loudspeaker circuits.
• Main and standby amplifiers.
• Select wires on a multi-zone emergency microphone.
• All links between a decentralised system.
• Detection of missing modules or amplifiers within the critical signal
path.
• Automatic level controllers must be monitored and should failsafe to a
pre-determined level, not mute.
BS5839-8
• The system should latch the input condition from the fire panel
ensuring that if a link is broken the alarm broadcast continues.
Reset is achieved by a separate signal from the fire panel.
• After reset the system should be capable of producing a general
evacuate broadcast within 30 seconds.
• The fire alarm interface and VACIE must be separated by no greater
than 10m, unless duplicate circuits are used.
• Any fault should be indicated within 100 seconds.
• Standby batteries to have capacity for 24hrs quiescent followed by
30 mins all zones evacuate.
• 120 min enhanced fire resisting cables to be used in unsprinklered
buildings having a phased evacuation, or buildings over 30m high or
where the risk assessment demands.
EN54-16
• Many European countries adopted this standard in April 2011.
• All voice alarm manufacturers need their products third party
tested by an accredited test house.
• Specifiers, consultants, installers and end users need to ensure that
the voice alarm equipment supplied has full EN54-16 third party
certification.
• All manufacturers must have relevant factory production control
procedures in place – i.e. EN ISO9001-2000.
• Power supplies need to meet EN54-4.
• Loudspeakers need to meet EN54-24.
• Annual inspections of the factory will be carried out by the test
house.
• All future product enhancements will need to be submitted for
testing.
EN54-16
• VIGIL2 voice alarm products have full BSEN54-16:2008 certification
(including BSEN54-4:2008 for power supplies).
• Our requirement for CE marking.
• Baldwin Boxall has all relevant EN54 certificates (no price increase
has been passed on to customers as a result).
• Any Baldwin Boxall supplied system can be upgraded to meet EN5416.
• The UK is currently exempt from EN54-16 regulations.
• The Construction Products Regulation (CPR) takes effect from 1st
July 2013. All voice alarm manufacturers will need to comply from
this date for UK sales.
www.baldwinboxall.co.uk