Solid State Detectors - Laboratoire de Physique des Hautes

Download Report

Transcript Solid State Detectors - Laboratoire de Physique des Hautes

Solid State
Detectors
T. Bowcock
Schedule
1
2
3
4
5
6
Time and Position Sensors
Principles of Operation of Solid State
Detectors
Techniques for High Performance
Operation
Environmental Design
Measurement of time
New Detector Technologies
2
Time and Position
Sensors
• History and Application to Particle
Physics
• Aim
– Background
– Basic Detector Concepts
3
Chronology of Discoveries
•
•
•
•
•
•
1900
Electron (1897)
J.J. Thompson
Cloud Chamber(1912)
C.T.R.Wilson
Cosmic Rays(1913) V.F.Hess &C.Anderson
Discovery of Proton(1919)
E. Rutherford
Compton Scattering (1923)
C.T.R.Wilson
Waves nature of e’s(1927)
C. Davisson
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
4
Beginning...
Geiger&Marsden
source
Zinc Sulphide Screen
E. Rutherford
1927, Rutherford, as President of the Royal Society, expressed a wish
for a supply of "atoms and electrons which have an individual energy far
transcending that of the alpha and beta particles from radioactive
bodies..."
5
Cross-Section
1 barn=10-24 cm2
approximately the area of
a proton
Distribution of scattering
angles tell us about the
force/particles
Precision required
6
Accelerator technology
The first successful
cyclotron, built by
Lawrence and his
graduate student M.
Stanley Livingston,
accelerated a few
hydrogen-molecule ions
to an energy of 80,000
electron volts. (80KeV)
1932- 1MeV
7
1932-1947
•
•
•
•
•
•
1900
Neutron(1932)
J. Chadwick
Triggered Cloud Chamber(1932) P.Blackett
Muon(1937)
S.H. Neddermeyer
Muon Decay(1939)
B.Rossi, Williams
Kaon(1944)
L. Leprince-Ringuet
Pion(1947)
.H.Perkins,G.P.S.Occialini
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
8
1947-1953
•
•
•
•
•
•
1900
Scintillation Counters(1947)
F. Marshall
pion decay(1947)
C. Lattes
Unstable V’s(1947)
G.D.Rochester
SemiConductor Detectors(1949) K.G.McKay
SparkChambers(1949)
J.W.Keuffel
K Meson(1951)
R. Armenteros
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
9
1953-1968
•
•
•
•
•
•
•
1900
Neutrino (1953)
Bubble Chamber(1953)
K+ Lifetime(1955)
Flash Tubes(1955)
Spark Chamber(1959)
Streamer Chambers(1964)
MWPC(1968)
1910
1920
1930
1940
1950
1960
F. Reines
D.A. Glaser
L.W.Alvarez
M. Conversi
S. Fukui
B.A.Dolgoshein
G. Charpak
1970
1980
1990
2000
10
CERN
LEP-1984-1999
SC 1957-1990
Synchrotron
Radiation
11
1968-1999
•
•
•
•
•
•
1900
J/ (charm) (1974) J.J, Aubert, J.E. Augustin
t lepton(1975)
M.Perl et al
B-mesons(1981)
CLEO
W,Z(1983)
UA1
number of n (1991)
L3
t-quark(1994) First major discovery with Solid CDF
State Detectors
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
12
Detector Technology
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
Emulsion
Cloud Chambers
Spark Chambers
MWPC
Drift Chambers
Bubble Chambers
Solid State
13
Cloud Chamber
• Supersaturated
Gas
• Cloud formation
• Used until 1950’s
• Build your own…
• Properties
14
Ionisation
• Charged particles
– interaction with
material
-+
+-+
-+
-+
+
-+
+
+ -+
-+
+
+-“track of ionisation”
15
Cloud Chamber
16
Emulsion
• Dates back to Bequerel (1896)
• Three components
– silver halide (600mm thick)
– plate
– target
• Grain diameter 0.2mm
– Still the highest resolution device
17
Emulsion
m
First s event
Scale 100mm
18
Emulsion
• Still used
– developed
– scanned
• computers help
– very accurate
– very slow
• Needs to be combined with active
spectrometer
19
Bubble Chamber
• Superheated
Liquid e.g. H2
– -253C
– 1954 d=3.4cm
– 1957 d=180cm
• Bubbles form
around ions
• 10mm in O(ms)
sketch dated January 25th, 1954
20
Bubble Chamber
• Gargamelle
– late 1960’s
• Volume=12m3
• magnet field
– measure p
• 4p acceptance!
21
Bubble Chamber
• First Neutral
Current Event (Z0)
seen in Gargamelle
• Bubble density
measures velocity
– b <0.8
• Use limited...
Physics Letters, 46B, 138 (1973)
– Cannot use in a storage ring
– slow cycle time and difficult to trigger
22
Ionisation
Density of electrons
• Important for all
charged particles
dE Dne   2mc2 b 2 2 
 ( ) 
2



 2 ln 
b  2 
dx
b  
I


• Bethe-Bloch Equation
velocity
Mean ionisation potential
(10ZeV)
Problem: Program this
yourselves!
23
Ionisation
• Most of our discussion on minimum
ionising paritcles (MIPS)
• Note essentially the same process in
gas, liquid or solid
• Using ions to “nucleate”
physics/chemical changes
– need to observe these changes
• however...
24
Ionisation
• In low fields the ions eventually
recombine with the electrons
• However under higher fields it is
possible to separate the charges
-+------------------------+-+- -- -- --- ----+------------------------+-+- -- -- --- ----+----- ---- ---------------+
E
Note: e-’s and ions
generally move at a
different rate
25
Spark Chambers
• Gas
– see into it
•
•
•
•
Particle tracking
Cheap
Fast(Pestov)
Large Signal
26
Spark Chamber
HT
27
Spark Chamber
• Highly efficient 95%
• High electron multiplication
– low electron affinity (Noble gases)
– high field
• Problems
– 30 ns pulses(high voltage spikes)
– resolution 300 mm
– long memory while ions clear (ms)
28
Streamer Chamber
• “Electrical Bubble Chamber”
• Plasma forms along path of
particle
– streamers move at high velocity
– sort pulse leaves visible streamer
suspended
• 40-300 mm resolution
– triggerable
29
Streamer Chamber
• 1991
– ions
30
Proportional Tubes
E (r )  V0 /( r ln( ra / ri ))
• Cylindrical tube
and wire
• Near the anode
wire large field
• Run below Geiger
Threshold
– signal proportional
to initial ionisation
V (r )  ln r / ri 
ra
+
ri
31
Multiwire Proportional
Chamber (MWPC)
• Charpak discovered if you put many wires
together act as separate detectors ..
anodes
Cathode plane
32
Signal Generation
 
   qE.dr  q1   2 
2
• Note
1
• Change in energy is source of signal
• Most electrons produced close to
anode
– form of voltage means electrons do not
drop much voltage compared with ions
that see almost all!
33
Ramo’s Theorem(1939)
i , 0
• quasistatic calculation
k
V1
1
i
Vk
 
v  Ei ( x1 )
I i  q
Vi
q
Problem for Students:
prove Ramo’s
Theorem<1 page
34
Gas Detectors….
• Many different kinds of gas detectors
– in use
– large volume
– cheap
– high resolution (down to diffusion levels)
– lots of experimental results
• Why do we want Solid State
Detectors?
35
Detectors
• Many mature technologies
– emulsions
– bubble chambers
– gas chambers
• Where next?
Question: what are
the advantages and
disadvantages of
each technology?
– High resolution
– reliable
• 50 years later Si!
36
Summary Lecture 1
• Many types of detectors
• Use of ionisation from charged
particles
– nucleation
– separation of charge
• Signal Generation
– ideas we will use next lecture
37
High Spatial Resolution
Detectors
• Solid State Detectors
– principles of operation
•
•
•
•
strip detectors
drift detectors
pixel detectors
CCD’s
– advantages and shortcomings
– methods of fabrication
38