EE 348: Lecture Supplement Notes SN2
Download
Report
Transcript EE 348: Lecture Supplement Notes SN2
EE 348:
Lecture Supplement Notes SN2
Semiconductor Diodes:
Concepts, Models, & Circuits
22 January 2001
Outline Of Lecture
• Rectification
• Semiconductor Diode
Circuit Schematic Symbol
Simplified Volt-Ampere Characteristic
Model
Static Volt-Ampere Relationship
Time Domain Charge Control Model
• Diode Circuits
Half Wave Rectifier
Full Wave Rectifier
Simple Limiter
EE 348 – Spring 2001
J. Choma, Jr.
Slide 44
Power Supply System
Sinusoidal
Voltage
Source
1
AC/DC
Converter
(Rectifier)
2
Lowpass
Filter
3
Voltage
Regulator
VDC
4
L
O
A
D
IDC
• System
Voltage At “1” Has Given RMS Value And Zero Average Value
Voltage At “2” Has Non-Zero Average Value; It Is A Time-Varying,
Harmonically Rich Half Or Full Wave Rectified Sinusoid
Lowpass Filter Attenuates Harmonics At “2” To Produce Constant,
Time-Invariant Voltage At “3”
Regulator Produces A Very Small Output Resistance Seen Looking
Back From “4”
• Load
Effective Load Resistance Is VDC/IDC
Voltage Source Nature At “4” Produces Near Constant VDC,
Regardless Of Current Value, IDC
EE 348 – Spring 2001
J. Choma, Jr.
Slide 45
SW
AC To DC Conversion
160
Rs
Vs
Rl
I/O Voltage (volts)
Vo
Output Voltage
120
80
40
0
-40 0
90
180
270
360
450
540
630
720
-80
-120
Input Voltage
-160
Zth
Vth
I
V
Load
Load
Linear
Network
I
V
General System
Thévenin Model
Zth
Vth
I
V
Normalized Time, t (degrees)
Zl
Vl
Linear Load
• Sinusoid Input: Vs V p Sint
• Output: Vo 0, when SW is open; Vo
V , when SW is closed
R R s
s
l
Rl
• Open Switch SW Whenever Vs < 0
• Plot Assumes Vs = 110 VRMS & Rl = 3Rs
EE 348 – Spring 2001
J. Choma, Jr.
Slide 46
SW
Average Output Voltage
160
I/O Voltage (volts)
Vo
Rs
Vs
Rl
Output Voltage
120
80
40
0
-40 0
90
180
270
360
450
540
630
720
-80
-120
Input Voltage
-160
Normalized Time, t (degrees)
• Average Value Calculation
2
1 Rl
1 Rl
Voavg
V p Sin x dx
V p Sin x dx
2 Rl Rs
2 Rl Rs
o
o
V p Rl
Voavg
37.1 volts
Rl Rs
• Conversion Efficiency Problem
EE 348 – Spring 2001
J. Choma, Jr.
Slide 47
Semiconductor Diode
i(
)
dt
• Schematic Symbol
vd(t)
• Volt-Ampere
Characteristic
Equation
id ( t )
dQd ( t )
Qd ( t )
t
dt
id ( t ) C j ( vd )
• Parametric Definitions
dvd ( t )
dt
, for vd ( t ) 0
, for vd ( t ) 0
Qd(t) Excess Charge Stored In PN Junction
Qd(t) 0: Diode Is Forward Biased
Qd(t) < 0: Diode Is Reverse Biased Or Back Biased
t
Storage Time Constant (nSec –to- pSec)
vd(t) Diode Voltage (Generally < 800 mV)
id(t) Diode Current (Value Depends On Junction Area)
Cj(vd) Junction Depletion Capacitance
EE 348 – Spring 2001
J. Choma, Jr.
Slide 48
Semiconductor Diode Models
Cd(vd )
id(t)
id(t)
vd(t)
Cj(vd )
id(t)
vd(t)
vd(t)
Qd(t)/t
Schematic
Diagram
Forward
Bias
• Charge Function
• Forward Bias
• Reverse Bias
EE 348 – Spring 2001
Reverse
Bias
Qd ( t ) t I s e
id ( t )
dQd ( t )
C d ( vd )
vd ( t ) nVT
Qd ( t )
t
dt
dQd ( t )
dvd ( t )
id ( t ) C j ( vd )
VT kT q
dQd ( t ) dvd ( t )
Qd ( t )
dvd ( t )
dt
t
t I s vd ( t ) nVT
e
nVT
dvd ( t )
J. Choma, Jr.
1 ;
dt
;
C j ( vd )
C jo
vd ( t )
1
V j
m
Slide 49
Diode At DC Steady State
id(t)
ID
ID
vd(t)
VD
Schematic
Diagram
VD
Qd(t)/t Qd(VD )/t
Steady State,
Forward Bias
Steady State
Forward Bias Model
• Steady State
Input Voltage Is Constant
Capacitances Behave As Open Circuits
• Forward Bias Current (VD 0)
ID
Qd ( t )
t
VD nVT
Is e
VD nVT
1 I se
• Reverse Bias Current (VD < 0)
VD nVT
ID Is e
EE 348 – Spring 2001
1 Is 0
J. Choma, Jr.
Slide 50
Diode DC V–I Characteristic
Forward Current (mA)
36
30
24
18
12
6
0
-0.5
-0.375 -0.25 -0.125
0
0.125
0.25
0.375
0.5
0.625
0.75
Forward Voltage (volts)
Is = 10 fA; T = 27 °C; n = 1
EE 348 – Spring 2001
J. Choma, Jr.
Slide 51
Piecewise Linear Approximation
• Two Segment Approximation
ID = 0 For VD V
ID – IQ = (VD – VQ)/rD For VD V
IQ Expected Quiescent, Or DC, Current Through Diode
VQ Corresponding Quiescent, Or DC, Diode Voltage
rD Incremental Diode Resistance At (IQ, VQ)
V Threshold Or Cut In Voltage Of Diode
• Operation For Diode Voltage Above Threshold
Current
ID Is e
Slope
dI D
dVD
VD nVT
1
VQ
rD
VD nVT
1 I se
Is
VQ nVT
e
nVT
VQ nVT
; IQ I s e
IQ
nVT
Threshold I I V V
D
Q
D
Q rD 0 IQ V VQ rD
V VQ nVT VQ
EE 348 – Spring 2001
J. Choma, Jr.
Slide 52
Piecewise Linear DC Diode Model
V
SW
VD
VD
VD
ID = 0
VD
rD
ID
36
30
Forward Current (mA)
ID
V
24
18
Piecewise
12
Linear
Actual
6
|
V
VD
0
-0.5
-0.375 -0.25 -0.125
0
0.125
0.25
0.375
0.5
0.625
0.75
Forward Voltage (volts)
• Model Parameters
Threshold Voltage, V, Generally Around 700 mV For Silicon
For Germanium Diodes, V Is Closer To 200 mV
Diode Resistance, rD, Generally Around A Few Ohms
• Emulates Switch With Resistance And Offset
Switch Closed For VD V; Switch Open For VD < V
Generally rD Is Negligibly Small
For Large Applied Voltages, V Can Often Be Ignored
EE 348 – Spring 2001
J. Choma, Jr.
Slide 53
Half Wave Rectifier
ID
rD ID V
VD
Vo
Rs
Rs
Vs
Rl
Vs
• Reverse Bias
Vs V p Sin t
• Forward Bias
EE 348 – Spring 2001
Vo
Rs
VD
Rl
Schematic
Diagram
VD
Vo
Forward-Biased
Diode
Vs
Rl
Reverse-Biased
Diode
VD Vs I D Rs Vo V Vs V Vo I D Rs
I D 0 Vo 0 , whenever Vs V
Vs V
Rl
Vo
R r R
D
l
s
J. Choma, Jr.
Vs V
Slide 54
Filtered Half Wave Rectifier
ID
rD ID V
VD
Vo
Rs
Rs
Vs
Rl
Schematic
Diagram
Cl
Vs
VD
Vo
Vo
Rs
VD
Rl
Diode Is Conductive,
Capacitor Charges
Cl
Vs
Rl Cl
Diode Is Not Conductive,
Capacitor Discharges
• Load Resistance, Rl, Is Ratio Of Desired DC
Output Voltage –To– Desired DC Output Current
• Diode Conducts (Vs Vo + V)
Capacitor Charges With Time Constant, [Rl||(rD + Rs)]Cl
For Small Time Constant, Output Voltage Follows Input
Maximum Output Voltage
Rl
V p V
To Which Capacitor Charges: Vomax
Rl rD Rs
EE 348 – Spring 2001
J. Choma, Jr.
Slide 55
Filtering–Cont’d
• Diode Non-Conductive
Capacitor Voltage Does Not Change Instantaneously
When Capacitor Charges To Its Maximum Voltage And The Input
Sinusoid Diminishes from Its Maximum Value, The Diode Open
Circuits And The Capacitor Discharges Through The Load
Resistance, Rl
V V
D
Vo Vomax e
t Rl Cl
Rs
o
Vomin Vomax e
T p Rl Cl
Diode Begins To
V
R
s
l
Cl
Conduct Again
When The
Unfiltered Output
Rises To Meet The
Decaying Capacitor Voltage
At Time Tp. At This Point, The Output Voltage Is Vomin
See Plots On Next Slide
EE 348 – Spring 2001
J. Choma, Jr.
Slide 56
Waveforms: Capacitive Filter
Ripple, Vr
12
8
Voltage (volts)
Vomax
Vomin
Unfiltered
Output
Filtered
Output, V o
4
0
0
3
7
10
14
17
21
24
28
31
35
38
42
45
49
-4
DT
-12
t = Tp
Input: V s
t=0
-8
Time (mSEC)
EE 348 – Spring 2001
J. Choma, Jr.
Slide 57
Ripple of Filtered Rectifier
• Characteristic Voltage Equations
Vo Vomax e
t Rl Cl
Vomin Vomax e
T p Rl Cl
• Ripple Equations
T
•
RC
Vr Vomax Vomin Vomax Vomax e p l l
Tp
Vr
1
T p Rl Cl
r
1 e
, for Rl C l T p
Vomax
Rl Cl
f Rl Cl
VD Vo
Example
Rs
r 5%
Cl
f 60 Hz
C l 667 F
Vs
Rl Cl
100
Rl 500
• Non-Ideal Large Capacitance
EE 348 – Spring 2001
J. Choma, Jr.
Slide 58
Diode Conduction Time
12
Vomax
8
Voltage (volts)
Vomin
Unfiltered
Output
Filtered
Output, V o
4
0
0
3
7
10
14
17
21
24
28
31
35
38
42
45
49
-4
DT
-8
Input: V s
0
Tp
-12
Time (mSEC)
Neighborhood Of Time t = 0
Reasonable
Result
vo ( t ) Vomax Cos t
vo ( DT ) Vomin Vomax Cos( DT )
Vr Vomax Vomin Vomax 1 Cos( DT )
DT 2
Vr Vomax
2
EE 348 – Spring 2001
DT
2Vr
2r
Vomax
J. Choma, Jr.
Slide 59
Maximum Diode Current
12
Vomax
8
Voltage (volts)
Vomin
Unfiltered
Output
iD(t)
Filtered
Output, V o
4
vo(t)
Rs
0
0
3
7
10
14
17
21
24
28
31
35
38
42
45
-4
Vs
DT
-8
Input: V s
0
49
Rl
Cl
Tp
-12
Time (mSEC)
Diode Current
v (t )
dv ( t )
iD ( t ) o
Cl o ; vo ( t ) VomaxCos( t )
Rl
dt
Occurs At Diode Cut
In Point, t = –DT; Load Voltage Nearly Constant At Vomax
I Dmax
Vomax
Rl
Vomax C l Sin( DT )
Vomax
I Dmax
1 2
Rl
EE 348 – Spring 2001
Vomax
Rl
2
I DC 1 2
r
J. Choma, Jr.
C l Vomax 2 r
2
r
Slide 60
Transformer Input
Vs1
ID
N:1
Vs2
Secondary
Winding
Primary
Winding
Is
Is
Vs1
Rs
Vs
ID
N:1
Vo
Vs2
Rl
Cl
Transformer
• Ideal Transformer
Vs1 NVs2 ; I D NI s
N Is Turns Ratio; Generally, N >>1
Voltage On Primary Winding Is Stepped Down By Factor Of N
Current In Primary Winding Is Stepped Down By Factor Of N
• Impedance Transformation
Set Vs = 0 To Find Effective Source Resistance Seen By Diode
Marked Resistance Reduction Vs2
Vs1 N
Vs1 I s
Rs
ID
EE 348 – Spring 2001
J. Choma, Jr.
NI s
N
2
N2
Slide 61
Full Wave Rectifier
Cl
ID1 D1
Is
Rs
Vs
N:1
Vs1
N:1
Vs2
Vs3
Rl
Il
Vo
ID2 D2
• Center–Tapped Transformer
• Operation
Vs2 Vs3
Vs1
N
When Vs1 Is Positive, Vs2 = Vs3 > 0 ID2 = 0 & Il = ID1
When Vs1 Is Negative, Vs2 = Vs3 < 0 ID1 = 0 & Il = ID2
Result Is Full Wave Sinusoid For Unfiltered Case
EE 348 – Spring 2001
J. Choma, Jr.
Slide 62
Full Wave Performance
• Half Wave Analysis Can Be Replicated With
Minor Modifications
• Unfiltered Average Is Twice As Large As Half
Wave Case Because Current Is Now
Continually Supplied To Load
• Ripple Is Factor Of Two Smaller Because
Capacitor Now Decays For Only ½ Period
r
Vr
Vomax
T p Rl Cl
1 e
Tp
Rl Cl
1
2 f Rl Cl
, for Rl Cl T p
For Same Ripple, Filter Capacitor Can Be ½ As Large In Full
Wave Rectifier As In Half Wave Unit
Maximum Diode Current, Expressed In Terms Of Ripple, Is The
Same As for Half Wave Case
EE 348 – Spring 2001
J. Choma, Jr.
Slide 63
Bridge Full Wave Rectifier
Il
D
2
Rl
1A
D
Vs
D
2A
1
D
Rs
Cl
• Operation
When Vs > 0, Current Flows From Vs Through D1-Rl-D1A-Back To Vs
When Vs < 0, Current Flows From Vs Through D2-Rl-D2A-Back To Vs
Full Wave Unfiltered Output Results
• Comments
Two Threshold Voltages In Each Current Path
Does Not Require Center Tap Transformer
EE 348 – Spring 2001
J. Choma, Jr.
Slide 64