Two dimensional magnetism in the layered molecular Mott

Download Report

Transcript Two dimensional magnetism in the layered molecular Mott

Confinement of spin diffusion to single molecular layers
in layered
organic conductor crystals
I.F. Schegolev Memorial Conference
“Low-Dimensional Metallic and Superconducting Systems”
October 11–16, 2009, Chernogolovka, Russia
András Jánossy1
Ágnes Antal1
Titusz Fehér1
Richard Gaál2
Bálint Náfrádi1,2
László Forró2
Crystal growth: Erzsébet Tátrainé Szekeres1, Ferenc Fülöp1
special thanks to Natasha Kushch
1Budapest University of Technology and Economics, Institute of Physics
2Ecole Polytechnique Federale de Lausanne
Quasi 2D molecular layered compounds:
Independent currents in each layer?
Uncoupled magnetic order in each layer?
A
IA or MA
B
IB or MB
A
B
- ET2-X, layered organic crystal
X = Cu[N(CN)2]Cl, Br 2D polymer
c
b
1 hole / ET2 dimer
A
ac=90°
X
ac=0°
a
B
- ET2-X, layered organic crystal
X = Cu[N(CN)2]Cl, Br 2D polymer
c
b
1 hole / ET2 dimer
A
tII
t
X
B
a
t//  100 meV
t 0.1 meV
ac=45°
Phase diagram
-(BEDT-TTF)2CuN(CN)2Cl, Br
300
Temperature (K)
250
"Bad" metal
200
150
Mott
transition
100
50
0
0,0
Metal
Insulator
Antiferromagnet
0,1
0,2
Superconductor
0,3
0,4
Pressure (kbar)
0,5
0,6
1
5
10
Goal:
Determine:
1. interlayer magnetic interaction in antiferromagnet
2. interlayer electron hopping frequency,  in metallic phase
Method: high frequency ESR
1. Antiferromagnetic resonance, AFMR
2. Conduction electron spin resonance, CESR
High frequency ESR spectrometer
high resolution
same sensitivity
0-12 kbar pressure
TEKCL7 ET2CuN(CN)2Cl (a,b) plane ESR at 222.4GHz
250 K
420 GHz, Lausanne
222.4 GHz, Budapest
A
7,90
B
7,95
Ref.
8,00
8,05
Magnetic field (T)
9.4 GHz
BRUKER E500
7.96
7.97
7.98
7.99
8.00
222 GHz
9 GHz
0.33
0.34
0.35
0.36
0.37
Magnetic field (T)
0.38
Phase diagram
-(BEDT-TTF)2CuN(CN)2Cl, Br
ET-Cl
ET-Br
300
2. Conduction electron spin resonance
Temperature (K)
250
"Bad" metal
200
150
100
50
0
0,0
Metal
Insulator
Antiferromagnet
1. Antiferromagnetic
resonance
0,1
0,2
Superconductor
0,3
0,4
Pressure (kbar)
0,5
0,6
1
5
10
Antiferromagnetic resonance
F=
HZeeman
+
Hexchange +
F = - B(M1 + M2 ) +  M1 M2
HDM
+ D(M1 x M2)
+
Hanisotropy
+ ½Kb(M1y2 +M2y2)+½K(M1z2 + M2z2)
D
z
y
M1
B
M2
2 magnetizations  2 oscillation modes
First AFMR work:
Ohta et al, Synth. Met, 86, (1997), 2079-2080
Magnetic structure
DA
J = 600 T
MA1
A
MA2
AB =?
DB
MB2
B
MB1
D. F. Smith and C. P. Slichter, Phys. Rev. Let. 93, 167002, 2004
F = FA + FB + ABMAMB
Antiferromagnetic resonance
calculation
-(BEDT-TTF)2CuN(CN)2Cl
F = FA + FB + ABMAMB
4 magnetizations : 4 modes:
ωαA , ωbA
Frequency [GHz]
B // b
ωb
ωa
111.2 GHz
ωαB , ωbA
Magnetic field [T]
Antal et al., Phys. Rev. Lett. 102, 086404 (2009)
Antiferromagnetic resonance
experiment
-(BEDT-TTF)2CuN(CN)2Cl
AFMR, 111.2 GHz, 4 K, H//b
F = FA + FB + ABMAMB
4 magnetizations : 4 modes:
ωαA , ωbA
ωαB , ωbA
Antal et al., Phys. Rev. Lett. 102, 086404 (2009)
b
Antiferromagnetic resonance
measured and calculated
a
Resonance field (T)
9
dA
B, magnetic field
b
dB
ab
-a
a
(a)
8
7
AB
6
A
5
4
B
3
2
-30
0
30
60
90
120
150
180
210
ab (deg)
A and B modes do not cross!
intra-layer exchange:
inter-layer coupling:
J = 600 T
AB =1x 10-3 T
 AB =  AB exchange +  AB dipole
(same order of magnitude)
Antal et al., Phys. Rev. Lett. 102, 086404 (2009)
Conduction electron spin resonance
in the metallic phase
ET-Cl
ET-Br
300
Conduction electron spin resonance
Temperature (K)
250
Metal
200
150
100
50
0
0,0
Metal
Insulator
Antiferromagnet
0,1
0,2
Superconductor
0,3
0,4
Pressure (kbar)
0,5
0,6
1
5
10
2D spin diffusion
A

B

interlayer hopping rate
T1
spin life time
 < 1/T1
2D spin diffusion
2D spin diffusion
spin ≈ 250 nm
vF//= 1 nm
t
 = (2t2 //) / ħ 2
A

B
blocked by short //
N. Kumar, A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992)
Expectation (300 K) :
ħ / t ≈ 10-11 s,
// ≈ 10-14 s
T1 ≈ 10-9 s
 ≈ 2x108 s
< 1/T1
2D spin diffusion
Measurement of interlayer hopping
ESR of 2 coupled spins
A= gABB/h
A

B
B= gBBB/h
gA ≠ gB
Measurement of interlayer hopping
ESR
A
A
B
B
 ≈ I A – B I
 < I A – B I
A
B
interlayer hopping frequency
 > I A – B I
2 resolved ESR lines
P=0, T=45-300 K
TEKCL7 ET2CuN(CN)2Cl (a,b) plane ESR at 222.4GHz
250 K
A
B
A

Ref.
B
7,90
7,95
8,00
Magnetic field (T)
8,05
A. Antal, BUTE, April 2008
 < I A – B I
 < 3 x 108 Hz
Antal et al., Phys. Rev. Lett. 102, 086404 (2009)
ESR g- factor anisotropy
45 -250 K
b
-(BEDT-TTF)2CuN(CN)2Cl
B, magnetic field
a
TEKCL7 ET2CuN(CN)2Cl (a,b) plane 250K 222.4GHz
-14
-16
-18
ESR shift (mT)
-20
b
-22
B
-24
-26
-28
-30
-32
A
a
-34
-36
-38
-180
-150
-120
-90
-60
-30
o
angle, a ( )
Antal et al., Phys. Rev. Lett. 102, 086404 (2009)
0
30
60
A. Antal, BUTE, 2008

a
Measurement of interlayer hopping
ESR
A
B
B
 ≈ I A – B I
 < I A – B I
A
B
pressure
A
interlayer hopping frequency
 > I A – B I
Measurement of interlayer hopping
Motional narrowing
under pressure
-ET2-Cl
210 GHz
0,5
T=250 K,
B in (a,b) plane
0,5
Ref.
0,4
0,4
0,3
0,3
0,2
0,2
 > I A – B I
 ≈ I A – B I
0,1
0,1
0,0
0,0
experiment
7,42
7,44
7,46
fit
7,48
7,50
Magnetic field (T)
7,42
7,44
7,46
7,48
7,50
Magnetic field (T)
 < I A – B I
pressure
Pressure (GPa)
Instr.
Measurement of interlayer hopping
Motional narrowing
under pressure
420 GHz
TEKCl8
A
B
Magnetic field (T)
14,94
1,0
0,8
14,92
0,6
0,4
14,90
0,2
0
14,88
0
2
4
6
8
Pressure (kbar)
 = I A – B I = 1.0 x109 s-1
10
ESR spectral intensity
14,96
T=250 K,
Measurement of interlayer hopping
pressure dependence
T=250 K
10
1x10


100
9
1x10
Conductivity (Ohm cm)
-1
interlayer hopping rate, 2 (Hz)
1000
0,0
0,5
1,0
Pressure (GPa)
= (2t2 //)/ħ2
blocked interlayer hopping
  //
parallel d.c. conductivity
Summary
(P, T) interlayer hopping frequency
ET-Cl
ET-Br
300
Temperature (K)
250
2x108 s-1
5x109 s-1
Metal
200
150
100
50
0
0,0
Metal
Insulator
Antiferromagnet
0,1
0,2
Superconductor
0,3
0,4
Pressure (kbar)
0,5
0,6
1
5
10
Measurement of interlayer hopping
temperature dependence
metal
111.2 GHz
TEKCL8 ET2CuN(CN)2Cl 0 kbar B//DM tempdep 111.2 GHz
P=0
200K
temperature
150K
100K
50K
4,00
4,02
4,04
4,06
Magnetic Field (Tesla)
4,08
4,10
Interlayer hopping frequency
250K
antiferromagnet
Measurement of interlayer hopping
temperature dependence
metal
111.2 GHz
TEKCL8 ET2CuN(CN)2Cl 4kbar B//DM tempdep 420 GHz
P=4 kbar
250
temperature
150
100
50
14,90
14,95
Interlayer hopping frequency
200
15,00
Magnetic Field (Tesla)
superconductor
2D spin diffusion
confinement ≈ 350 nm
vF//= 1 nm
A

B
 = (2t2 //) / ħ 2
blocked by short //
Measurement 250 K, P=0 :
 ≈ 2x108 s-1
< 1/T1
2D spin diffusion
Electrons are confined to single molecular layers in regions of 350 nm radius
// = 10-14 - 10-13 s
t = 0.1 meV - 0.03 meV
Anisotropy of resistivity
t// 100 meV
t 0.1 meV
H. Ito et al J. Phys. Soc. Japan
65 2987 (1996)
-  / // nearly independent of T
-   100 cm
-
 / //  102 - 103
Anisotropy of resistivity
-(BEDT-TTF)2CuN(CN)2Br
-(BEDT-TTF)2CuN(CN)2Cl
Buravov et al. J. Phys. I 2 1257(1992)
H. Ito et al J. Phys. Soc. Japan
65 2987 (1996)
 = (2t2 //) / ħ 2 blocking of interlayer tunnelling
  1 /   1 / // ,
//  1 / //
 / //  ( t// / t )2 (a/d)2
independent of T
Perpendicular dc resistivity:
 = 1/( e2 g(EF)  d)
g(EF) = two dimensinal density of states
d: interlayer distance
-(BEDT-TTF)2CuN(CN)2Cl at 250 K, P=0:
Calculated:  = 80 -300 cm
Typical measured: 100 cm
Anisotropy of resistivity
t   0.1 meV, t//  100 meV
 / //  ( t// / t )2 (a/d)2
expected anisotropy:
 / //  106
measured:
 / //  102 - 103
: dc resistivity and DoS agree with CESR
// : measured is much less than calculated
?? unsolved
a-(BEDT-TTF)2[Mn2Cl5(H2O)5]†
Mn
Layer A
Mn
Layer B
Zorina et al CrystEngComm, 2009, 11, 2102
ESR INTENSITY (arb. u.)
ESR in (ET)2CuMn[N(CN)2]4,
a radical cation salt with
quasi two dimensional magnetic layers
in a three dimensional polymeric structure
Mn
ET
K. L. Nagy1, B. Náfrádi2, N. D. Kushch3, E. B. Yagubskii3,
Eberhardt Herdtweck4, T. Fehér1, L. F. Kiss5, L. Forró2, A. Jánossy1
Phys. Rev. B (2009)
measurement
simulation
Ref.
14.80
14.85
14.90
14.95
MAGNETIC FIELD (T)
15.00
15.05
ESR spectrum in the a* direction at 420 GHz and 300 K.
Resolved lines correspond to the Mn2+ ions and the ET molecules.
Me-3.5-DIP)[Ni(dmit)2]2
PS3-7 Yamamoto bi functional conductor
PHYSICAL REVIEW B 77, 060403R 2008
PS3-10 Hazama transport under pressure
Summary
(P, T) interlayer hopping frequency
ET-Cl
ET-Br
300
Temperature (K)
250
2x108 s-1
5x109 s-1
Metal
200
150
100
50
0
0,0
Metal
Insulator
Antiferromagnet
0,1
0,2
Superconductor
0,3
0,4
Pressure (kbar)
0,5
0,6
1
5
10
Antiferromagnet
AB = AB exchange + AB dipole
same order of magnitude
Maybe AB changes sign at Mott transition ?
A
AB
B
Measurement of interlayer hopping
Motional narrowing
under pressure
-ET2-Cl
420 GHz
Instr. Ref.
Pressure (GPa)
T=250 K,
B in (a,b) plane
1,0
1,0
0,8
0,8
0,6
0,6
0,4
0,4
 > I A – B I
 ≈ I A – B I
0,2
0,2
0,0
0,0
experiment
14,90
fit
14,95
15,00
Magnetic field (T)
14,90
14,95
15,00
Magnetic field (T)
 1 < I A – B I
Antiferromagnetic resonance
Calculated
B
B in (a,b) plane
a
dA
b
dB
ab
-a
Resonance field (T)
9
8
A
A
7
6
5
A
4
ωb
3
A
2
-30
A
ωa
0
30
60
90
120
150
ab (deg)
„A” layers only
180
210
Antiferromagnetic resonance
Calculated
B in (a,b) plane
a
dA
b
-a
dB
Resonance field (T)
9
8
A
7
A
A
B
B
6
5
4
B
A
B
A
3
2
-30
0
30
60
90
120
150
180
ab (deg)
Independent A and B layers
A and B modes cross!
210
B
Antiferromagnetic resonance
-(BEDT-TTF)2CuN(CN)2Cl
A. Antal et al 2008 (present work)
Ohta et al, Synth. Met, 86, (1997), 2079-2080
B // b
’-(BEDT-TTF)2CuN(CN)2Cl
resistivity
18
16
14
b
12
800
10
ac x400
8
6
b/ac
400
4
2
0
0
0
50
100
150
200
Temperature (K)
Zverev et al, Phys. Rev. B. 74, 104504 (2006)
250
 (Ohm·cm)
Resistivity anizotropy, b/ac
1200