Transcript Document

Carlson et al. ‘01
Three Characteristic Acceleration Regions
Carlson et al. ‘01
Alfvén Wave Induced Outflow
OUTFLOW
Ponderomotive Lifting
via Alfvén Waves
ap|| = ¼||(E/B0)2
> GME/r2
for E > 200 mV/m
Strangeway et al. ’02
at 1000 km altitude
Ponderomotive Force
(in a cold magnetized plasma)


mi E2^
e2 
1
1 2
2
F =
Ñ
E E  »
Ñ
pi
4mi  w2 - w2 ^ w2 
4 B2
ci
0


E E^
w wci
1
Li and Temerin ‘93
• Electrodynamic Coupling: Energy Dissipation
̶ Joule heating
̶ Current-Voltage relation (Knight; ?)
̶ Alfvén wave induced dissipation (?)
• Inertial Coupling: Mass Exchange
̶ Bulk outflows – polar wind
̶ Fractional outflows – energization (O+)
SWM
LFM
LFM
B
s
RCM
minutes
LFM
Precip
W|| , E0
TING
LFM
RCM
RCM
RCM
j||
s
LFM
MIC
seconds
MIC
Φ
TING
RCM
MIC
Empirical
Σ
M-I Coupler
 ΣΦ vn × B  j ||
MIC
minutes
TING
Σ ,vn
MIC
iterate
Φ
TING
TING
m
1½-way LFM-RCM coupling w/ convergent, iterative, 2-way TING coupling
SWM
LFM
LFM
S   E   B  bˆ
B
s
minutes
RCM
LFM
B2>
LFM
RCM
RCM
RCM
j||
s
TING
minutes
MIC
j   B
M-I Mass Coupler
V O+  V n 
bˆ  g
O n
+

bˆ  
O  O n
+
P
O
+
 Pe   B2 / 20

+
Gravity = Ponderomotive Force
at 1000-km altitude for
TING
TING
m
nO+ = 1010/m3 and B = 80 nT
Auroral Morphology
as seen in
Visible
FUV
Upward
Poynting
Flux
Downward
Poynting
Flux
Keiling et al. ‘03
Carlson et al. ‘01
Alfvénic Acceleration Regions
Polar
Lobe
Intense, field-aligned Poynting
fluxes flow earthward along the
“lobe-plasma sheet” interface
Polar
Cap
Plasma Sheet
FAST
UVI
MPA
Auroral
Zone
Wygant et al. ’00
S (, L,t )   E H 
LFM Low-Altitude Boundary
TING High-Altitude Boundary
CISM All Hands Meeting
15 Sep 2003
S (, L,t,  )   E B  0
LFM Low-Altitude Boundary
 B , j
E ,V O+
TING High-Altitude Boundary
V O+

1
1
2
ˆ
 b
g


P

P


B

e
 / 2 0
O+
 O+ n  O+



 V n

E ,u
TING High-Altitude Boundary
d i

dt
du i
i B 

dt
dPi
dt

5
3

1
i
 
ui
d
S+L
dt
B

Pi B 


t
 ( u E  bˆ u i )  
 P  P   B /2   g bˆ  rˆ    u
2
e
 
i


i in
0
in
i
u n
mn

2
2
k (Tn  Ti ) 
(ui  u n )  Qi

B
mi  mn 
3
ui
Alfvén-wave
Lorentz Force


eni v  B  eni v Pol  B 
 J Pol  B
  B2 
  

 2 0 
“Quasi-static” Alfvén waves
 r0 
h B  C1 ( , L)  B  B 0 ( , L)  
r
3/2
 r0 
hL BL  C 2 ( , L)  BL  BL 0 ( , L)  
r
3/2
Banks and Holzer ‘69
Questions
LFM
• BCs on , T?
• Inner boundary at r = constant where r  b  0
 r  vE  0, i.e., vE has a component normal
to the boundary.
TING
• Ion energy and momentum equations?
• Same ion composition in E and F layers?
CHART LEGEND
Grid Specification
Source of Numerical Data
Magnetospheric Model
MM
Ring-Current Model
RCM
TIM
Thermosphere-Ionosphere Model
MIC
M-I Coupler
MM
RCM
A
MIC
“Variable A from MM on the MM grid and
variable A from RCM on the RCM grid
are interpolated onto the MIC grid”
SWM
MM
MM
B
s
minutes
RCM
MM
Precip
W|| , E0
MM
RCM
RCM
RCM
j||
s
MM
MIC
MIC
Φ
seconds
RCM
MIC
M-I Coupler
 ΣΦ  j ||
Empirical
Σ
1½-way LFM-RCM coupling
SWM
MM
MM
B
s
RCM
minutes
MM
Precip
W|| , E0
TIM
MM
RCM
RCM
RCM
j||
s
MIC
MIC
Empirical
Σ
M-I Coupler
 ΣΦ vn × B  j ||
MIC
TIM
Σ ,vn
MIC
iterate
Φ
TIM
TIM
m
Convergent, iterative, 1-way TING coupling
Auroral Electrodynamics
Opgenoorth et al. ‘02
Ionospheric Feedback
Polarization  Field-Aligned Current
Atkinson ’70; Sato ‘78
Two-fluid MHD model of the magnetosphere
Electron parallel momentum equation
 v||e

me n0 
  AR   IC  v||e   en0 E||  bˆ  pe  0,
 t

where v||e - electron parallel speed; IC - electron collision frequency;
AR - effective collision frequency representing the effects of plasma anomalous resistivity.
Density continuity equation
n1
   n0 v||ebˆ  0,
t
Current continuity equation
2

 E 
c
2 2
2 2
ˆ
1  i     j||b   0  1  i    2 
 0,
v A  t



where ρi - ion Larmour radius.
Model of the auroral ionosphere
Density Continuity Equation
j||
j|| hot
n1

 1   
 Si  n 2 ,
t
eh
eh
where n = n0 + n1 - plasma number density;
Si  n02 - ionization source maintaining equilibrium density n0
outside the region of auroral precipitations;
j|| - field-aligned current;  - recombination coefficient.
Current Continuity Equation


  S P E  S H E  bˆ   j|| ,
where SP and SH are height-integrated ionospheric Pedersen and
Hall conductances.
“Feedback” Unstable Alfvén Waves
Small-Scale Resonator
Two resonant
cavities
Growth rate
vs
P, E and k
Pokhotelov ‘02
Large-Scale Resonator
Feedback Instability
125 s
220 s
141 s
235 s
157 s
251 s
173 s
266 s
188 s
281 s
204 s
297 s
ENS
Ionospheric Alfvén Resonator
J 
J 
Ne
+
–
Ne2
+
–
SP
+
–
E Layer
E
Stable?
–
+
yes
no
L = 7.25
Streltsov and Lotko ‘02
8.25
670 mV/m
“Satellite” Measurements
600
BEW
-50
400
-100
200
670 mV/m
nT
mV/m
ENS
0
-150
ENS
-200
0
0
50
100
150
BEW
200
distance, km
150
5
100
3
2
PB
50
270 nT
4
(nT)2 km
(mV/m)2 km
PE
j
1
0
0
0
0.05
0.10
0.15
k, km-1
0.20
0.25
80 A/m2
Time Step = 297 s
Streltsov and Lotko ‘02
ENS
(mV/m)
L = 8.25
7.25