Chapter 6 pn Junction Diodes: I-V Characteristics

Download Report

Transcript Chapter 6 pn Junction Diodes: I-V Characteristics

Semiconductor Device Physics
Lecture 8
Dr.-Ing. Erwin Sitompul
President University
http://zitompul.wordpress.com
President University
Erwin Sitompul
SDP 8/1
Chapter 6
pn Junction Diodes: I-V Characteristics
Qualitative Derivation
Majority
carriers
Majority
carriers
President University
Erwin Sitompul
SDP 8/2
Chapter 6
pn Junction Diodes: I-V Characteristics
Current Flow in a pn Junction Diode
 When a forward bias (VA > 0) is applied, the potential barrier to
diffusion across the junction is reduced.
 Minority carriers are “injected” into the quasi-neutral regions
 Δnp > 0, Δpn > 0.
 Minority carriers diffuse in the quasi-neutral regions,
recombining with majority carriers.
President University
Erwin Sitompul
SDP 8/3
Chapter 6
pn Junction Diodes: I-V Characteristics
Ideal Diode: Assumptions
 Steady-state conditions.
 Non-degenerately doped step junction.
 One-dimensional diode.
 Low-level injection conditions prevail in the quasi-neutral
regions.
 No processes other than drift, diffusion, and thermal R–G take
place inside the diode.
President University
Erwin Sitompul
SDP 8/4
Chapter 6
pn Junction Diodes: I-V Characteristics
Current Flow in a pn Junction Diode
 Current density J = JN(x) + JP(x)
dn
d (n)
J N ( x)  qn nE  qDN
 q n nE  qDN
dx
dx
dp
d (p )
J P ( x)  qp pE  qDP
 q p pE  qDP
dx
dx
 JN(x) and JP(x) may vary with position, but J is constant
throughout the diode.
President University
Erwin Sitompul
SDP 8/5
Chapter 6
pn Junction Diodes: I-V Characteristics
Carrier Concentrations at –xp, xn
 Consider the equilibrium carrier concentrations at VA = 0:
p-side
n-side
pp0 ( xp )  N A
nn0 ( xn )  N D
ni2
np0 ( xp ) 
NA
ni2
pn0 ( xn ) 
ND
 If low-level injection conditions prevail in the quasi-neutral
regions when VA  0, then:
pp ( xp )  NA
President University
nn ( xn )  ND
Erwin Sitompul
SDP 8/6
Chapter 6
pn Junction Diodes: I-V Characteristics
“Law of the Junction”
 The voltage VA applied to a pn junction falls mostly across
the depletion region (assuming that low-level injection
conditions prevail in the quasi-neutral regions).
 Two quasi-Fermi levels is drawn in the depletion region:
p  ni e( Ei  FP ) kT
n  ni e( FN  Ei ) kT
np  ni2e( Ei  FP ) kT e( FN  Ei ) kT
 ni2e( FN  FP ) kT
np  ni2eqVA
kT
for  xp  x  xn
President University
Erwin Sitompul
SDP 8/7
Chapter 6
pn Junction Diodes: I-V Characteristics
Excess Carrier Concentrations at –xp, xn
p-side
n-side
nn ( xn )  ND
pp ( xp )  NA
ni2 e qVA
pn ( xn ) 
ND
2 qVA kT
i
ne
np ( xp ) 
NA
 np0 e
President University
 pn0 e qVA
qVA kT
ni2 qVA
np ( xp ) 
(e
NA
kT
kT
 1)
ni2 qVA
pn ( xn ) 
(e
ND
Erwin Sitompul
kT
kT
SDP 8/8
 1)
Chapter 6
pn Junction Diodes: I-V Characteristics
Example: Carrier Injection
 A pn junction has NA=1018 cm–3 and ND=1016 cm–3. The
applied voltage is 0.6 V.
a) What are the minority carrier concentrations at the
depletion-region edges?
np (xp )  np0eqVA
pn ( xn )  pn0eqVA
kT
kT
 100  e0.6 0.02586  1.192 1012 cm3
 104  e0.6 0.02586  1.192 1014 cm3
b) What are the excess minority carrier concentrations?
np (xp )  np (xp )  np0  1.192 1012 100  1.192 1012 cm3
pn ( xn )  pn ( xn )  pn0  1.192 1014 104  1.192 1014 cm3
President University
Erwin Sitompul
SDP 8/9
Chapter 6
pn Junction Diodes: I-V Characteristics
Excess Carrier Distribution
 From the minority carrier
diffusion equation,
d 2 pn pn
0  DP

,
2
dx
p
x  0
 We have the following
boundary conditions:
pn ( xn )  pn0 (eqVA
pn ()  0
kT
1)
 For simplicity, we develop a
new coordinate system:
x
0
0
 Then, the solution is given
by:
 x LP
x LP
pn ( x)  Ae

A
e
1
2
for x  0
LP  DP p
• LP : hole minority
carrier diffusion length
President University
x
Erwin Sitompul
SDP 8/10
Chapter 6
pn Junction Diodes: I-V Characteristics
Excess Carrier Distribution
 x '/ LP
x '/ LP
pn ( x)  Ae

A
e
1
2
 New boundary conditions
pn ( x  0)  pn0 (eqVA
pn ( x  )  0
kT
1)
 From the x’ → ∞, A2  0
From the x’ → 0, A1  pn0 (e
qVA / kT
1)
 x LP
 Therefore
qVA

pn ( x )  pn0 (e
kT
1)e
 Similarly,
np ( x)  np0 (eqVA
kT
1)ex LN , x  0
President University
Erwin Sitompul
, x  0
SDP 8/11
Chapter 6
pn Junction Diodes: I-V Characteristics
pn Diode I–V Characteristic
n-side
d pn ( x)
DP
J P ( x)  qDP
q
pn0 (eqVA
dx
LP
d np ( x)
DN
q
np0 (eqVA
p-side J N ( x)  qDN
dx
LN
J  JN
x  xp
 JP
x  xn
 JN
x 0
 JP
 DN
DP  qVA
J  qn 

 (e
 LN N A LP N D 
2
i
President University
Erwin Sitompul
kT
kT
kT
 1)e x LP
 1)e x LN
x 0
 1)
SDP 8/12
Chapter 6
pn Junction Diodes: I-V Characteristics
pn Diode I–V Characteristic
 DN
DP  qVA
I  AJ  Aqn 

 (e
 LN N A LP N D 
2
i
I  I 0 (e
 1)
DP 
2  DN
I 0  Aqni 


 LN N A LP N D 
qVA kT
President University
kT
 1)
• Shockley Equation,
for ideal diode
• I0 can be viewed as the drift
current due to minority
carriers generated within the
diffusion lengths of the
depletion region
Erwin Sitompul
SDP 8/13
Chapter 6
pn Junction Diodes: I-V Characteristics
Diode Saturation Current I0
 DP
DN 
I 0  Aqni 


L
N
L
N
N A 
 P D
2
 I0 can vary by orders of magnitude, depending on the
semiconductor material, due to ni2 factor.
 In an asymmetrically doped pn junction, the term associated
with the more heavily doped side is negligible.
 If the p side is much more heavily doped,
 DP 
I 0  Aqni 

L
N
 P D
2
 If the n side is much more heavily doped,
 DN 
I 0  Aqni 

L
N
 N A
2
President University
Erwin Sitompul
SDP 8/14
Chapter 6
pn Junction Diodes: I-V Characteristics
Diode Carrier Currents
• Total current density is
constant inside the diode
• Negligible thermal R-G
J  J N  JP
throughout depletion region
 dJN/dx = dJP/dx = 0
J N (  xp  x  xn )  J N ( xp )
J P ( xp  x  xn )  J P ( xn )
President University
Erwin Sitompul
SDP 8/15
Chapter 6
pn Junction Diodes: I-V Characteristics
Carrier Concentration: Forward Bias
 Law of the Junction
np  ni2eqVA
kT
 Low level injection
conditions
pp0
nn0
pp  N A
nn  N D
pn0
np0
Excess minority
carriers
np ( x)  np0 (e
qVA kT
President University
 x LN
1)e
Erwin Sitompul
Excess minority
carriers
pn ( x)  pn0 (eqVA
kT
SDP 8/16
1)e x LP
Chapter 6
pn Junction Diodes: I-V Characteristics
Carrier Concentration: Reverse Bias
 Deficit of minority carriers near the depletion region.
 Depletion region acts like a “sink”, draining carriers from the
adjacent quasineutral regions
President University
Erwin Sitompul
SDP 8/17
Chapter 6
pn Junction Diodes: I-V Characteristics
Deviations from the Ideal I-V Behavior
 Si pn-junction Diode, 300 K.
Forward-bias current
Reverse-bias current
“Slope over”
No saturation
“Breakdown”
Smaller slope
President University
Erwin Sitompul
SDP 8/18
Chapter 6
pn Junction Diodes: I-V Characteristics
Empirical Observations of VBR
 VBR decreases with
increasing N,
1
VBR  0.75
NB
 VBR decreases with
decreasing EG.
• VBR : breakdown voltage
President University
Dominant breakdown
mechanism is tunneling
Erwin Sitompul
SDP 8/19
Chapter 6
pn Junction Diodes: I-V Characteristics
Breakdown Voltage, VBR
 If the reverse bias voltage (–VA) is so large that the peak
electric field exceeds a critical value ECR, then the junction will
“break down” and large reverse current will flow
ECR
2q  N A N D 


 Vbi  VBR 
S  NA  ND 
• At breakdown, VA=–VBR
 Thus, the reverse bias at which breakdown occurs is
VBR 
 SECR 2  N A  N D 

  Vbi
2q  N A N D 
President University
Erwin Sitompul
SDP 8/20
Chapter 6
pn Junction Diodes: I-V Characteristics
Breakdown Mechanism: Avalanching
High E-field:
High energy, enabling
impact ionization which
causing avalanche, at
doping level N < 1018 cm–3
E
2
CR
Small E-field:
2q  N A N D 


 VBR
S  NA  ND 
• ECR : critical electric field
in the depletion region
Low energy, causing
lattice vibration and
localized heating
President University
Erwin Sitompul
SDP 8/21
Chapter 6
pn Junction Diodes: I-V Characteristics
Breakdown Mechanism: Zener Process
 Zener process is the tunneling
mechanism in a reverse-biased diode.
 Energy barrier is higher than the
kinetic energy of the particle
 The particle energy remains
constant during the tunneling
process
 Barrier must be thin  dominant
breakdown mechanism when both
junction sides are heavily doped
 Typically, Zener process dominates
when VBR < 4.5V in Si at 300 K and
N > 1018 cm–3.
President University
Erwin Sitompul
SDP 8/22
Chapter 6
pn Junction Diodes: I-V Characteristics
Effect of R–G in Depletion Region
 R–G in the depletion region contributes an additional
component of diode current IR–G.
n
 qA 
dx
t thermal
 xp
xn
I R-G
R G
 The net generation rate is given by
np  ni 2
n

t thermal
 p (n  n1 )   n ( p  p1 )
R-G
( ET  Ei ) kT
n1  nie
p1  ni e( Ei ET ) kT
President University
• ET: trap-state energy level
Erwin Sitompul
SDP 8/23
Chapter 6
pn Junction Diodes: I-V Characteristics
Effect of R–G in Depletion Region
 Continuing,
np  ni 2
 qA 
dx
 (n  n1 )   n ( p  p1 )
 xp p
xn
I R-G
 For reverse bias, with the
carrier concentrations n and p
being negligible,
• Reverse biases with
VA< – few kT/q
I R-G
qAnW
i

2 0
p 
1 n
where  0   p 1   n 1 
2  ni
ni 
President University
Erwin Sitompul
SDP 8/24
Chapter 6
pn Junction Diodes: I-V Characteristics
Effect of R–G in Depletion Region
 Continuing,
np  ni 2
 qA 
dx
 (n  n1 )   n ( p  p1 )
 xp p
xn
I R-G
 For forward bias, the carrier
concentrations n and p cannot
be neglected,
qVA
IR-G  qAnWe
i
President University
2kT
Erwin Sitompul
SDP 8/25
Chapter 6
pn Junction Diodes: I-V Characteristics
Effect of R–G in Depletion Region
I  I DIFF  I R G
Diffusion, ideal diode
I DIFF
I R-G
 DN
DP  qVA
 Aqn 

 (e
 LN N A LP N D 
2
i
kT
qVA kT
qAnW
(
e
 1)
i

2 0  V  V  n p
1  bi A
eqVA

kT q 2 0

President University
Erwin Sitompul
 1)

2 kT



SDP 8/26
Chapter 6
pn Junction Diodes: I-V Characteristics
Effect of Series Resistance
VJ  VA  IRS
q (VA  IRS ) kT
I  I 0e
 I 0eqVJ
kT
, VA  Vbi
Voltage drop,
significant for high I
RS can be determined
experimentally
V  IRS
slope=RS
President University
Erwin Sitompul
SDP 8/27
Chapter 6
pn Junction Diodes: I-V Characteristics
Effect of High-Level Injection
 As VA increases and about to reach Vbi, the side of the junction
which is more lightly doped will eventually reach high-level
injection:
nn  nn0
(for a p+n junction)
pp  pp0
(for a pn+ junction)
 This means that the minority carrier concentration approaches
the majority doping concentration.
 Then, the majority carrier concentration must increase to
maintain the neutrality.
 This majority-carrier diffusion current reduces the diode current
from the ideal.
President University
Erwin Sitompul
SDP 8/28
Chapter 6
pn Junction Diodes: I-V Characteristics
High-Level Injection Effect
Perturbation of both
minority and majority carrier
President University
Erwin Sitompul
SDP 8/29
Chapter 6
pn Junction Diodes: I-V Characteristics
Summary
Deviations from ideal I-V
Forward-bias current
Reverse-bias current
Due to high-level injection
and series resistance in
quasineutral regions
Due to thermal recombination
in depletion region
President University
Erwin Sitompul
Due to thermal generation in
depletion region
Due to avalanching and
Zener process
SDP 8/30
Chapter 5
pn Junction Electrostatics
Homework
 This time no homework. Prepare well for Quiz 2.
President University
Erwin Sitompul
SDP 8/31