Numerical integration
Download
Report
Transcript Numerical integration
Department of Engineering Mathematics and
Physics, Faculty of Engineering
Zagazig University
2009-2010
Numerical solution of linear equations.
Numerical solution of non linear equations.
Numerical integrations.
Curve fitting.
Numerical solution of ordinary differential equations.
Numerical solution of partial differential equations.
Next
The Main Menu
اPrevious
Numerical integration
It is the evaluation of a definite integral
y
y = f(x)
b
I f(x) dx .
Area
a
By using a numerical method of
0
approximate integration.
a
b
Where f(x)
it is complicated to integrate analytically.
Or it is given by a table.
Or the integral cannot be represented in terms of
finitely elementary functions.
Next
The Main Menu
اPrevious
x
y
y = f(x)
0
b
a
I f(x) dx
a
x1 x2
xn-1 b
x
and a = x0, b =xn
h
f(a) 2 f(x 1 ) 2 f(x 2 ) .... 2 f(x n 1 ) f(b) .
2
1
i . e . I f(x) dx h [f(a) f(b)] f(x 1 ) f(x 2 ) .... f(x n 1 ).
2
a
b
Where h
b a
n
Next
The Main Menu
اPrevious
Evaluate
1
I e
x 2
dx by means of trapezoidal rule with n = 10. For 4D.
0
b a 1
0.1
n
10
2
Calculate the values of f(x) e x
h
x
0
f(x)
1
1
I e
0
0.1
0.2
0.9900 0.9608
x2
dx
0.3
0.4
0.5
0.6
0.7
0.8
0.9139 0.8521 0.7788 0.6977 0.6126 0.5273
0.9
1.0
0.4449
0.3679
1 1
[ (1 0.3679) 0.9900 0.9608 0.9139 0.8521 0.7788
10 2
0.6977 0.6126 0.5273 0.4449] 0.7462
Next
The Main Menu
اPrevious
y
y = f(x)
0
b
I f(x) dx
a
a x1 x2 x3
x2n-1 b
x
h
f(a) f(b) 4f(x 1 ) f(x 3 ) ... f(x 2 n 1 ) 2f(x 2 ) f(x 4 ) ... f(x 2 n 2 ).
3
Where h
b a
2n
and a = x0, b = x2n
Next
The Main Menu
اPrevious
Evaluate
π/ 2
I
1 ((sinx) 2 / 4) dx by means of Simpson’s rule with 2n = 6. For 4D.
0
b a π/ 2 0 π
h
2n
6
12
Calculate the values of f(x) 1 ((sinx) 2 / 4)
π
6
π
4
0.9682
0.9354
0
π
12
f(x)
1
0.9916
I f(x) dx
I
2
x
b
a
1
3x12
3
4
5
π
3
0.9014
5π
12
0.8756
π
2
0.8660
h
f(a) f(b) 4f(x 1 ) f(x 3 ) ... f(x 2 n 1 ) 2f(x 2 ) f(x 4 ) ... f(x 2 n 2 ).
3
1 0.8660 40.9916 0.9354 0.8756 20.9682 0.9014 1.4674.
Next
The Main Menu
اPrevious
3
rule
8
b
I f(x) dx
a
Where n = 3,
3h
f 0 3 f1 3 f 2 f3 .
8
b a
h
3
b
3h
f 0 5 f1 f 2 6 f3 f 4 5 f5 f 6 .
I f(x) dx
10
a
Where n = 6,
Next
h
b a
6
The Main Menu
اPrevious
Evaluate
0.5
I e x sin 2 xdx . Using 3 rule .
8
0.2
h
b a 0.5 0.2
0.1
3
3
Calculate the values of
I
f(x) e x sin 2 x
x
0.2
0.3
0.4
0.5
f(x)
0.4756
0.7622
1.0702
1.3873
3(0.1)
0.4756 3(0.7622 1.0702) 1.3873 0.2760.
8
Next
The Main Menu
اPrevious
Evaluate
0.5
I e x sin 2 xdx .
Using Weddl’s rule
0.2
b a 0.5 0.2
h
0.05
6
6
Calculate the values of f(x) e x sin 2 x
0
1
2
3
x
0.2
0.25
0.3
0.35
0.4756
f(x)
b
I f(x) dx
a
0.6156
0.7622
0.9142
4
0.4
5
0.45
6
0.5
1.0702
1.2285
1.3873
3h
f 0 5 f1 f 2 6 f3 f 4 5 f5 f 6 .
10
3(0.05)
0.4756 5(0.6156) 0.7622 6(0.9142) 1.0702 5(1.2285) 1.3873 0.2760.
I
10
Next
The Main Menu
اPrevious
The double integral evaluated as an iterated integral
d b
I f(x, y) dx dy .
c a
d b
( f(x, y) dx) dy .
c
a
b
d
a
c
( f(x, y) dy) dx .
We can the do the same, using any integration method.
Next
The Main Menu
اPrevious
Evaluate
2.64.6
I
2
1
4 xy dx dy,
take h = 0.2 in x-direction, k = 0.3 in y-direction. Use
in x- direction and Simpson’s rule in y-direction.
3
rule
8
Calculate the values of f(x, y) 1
xy
y
x
4
4.2
4.4
4.6
2
0.125
0.1191
0.1136
0.1087
2.3
0.1087
0.1035
0.0988
0.0945
2.6
0.0962
0.0916
0.0874
0.0836
Next
The Main Menu
اPrevious
3
Applying rule in x-direction
8
For y
=2
3(0.2)
0.125 3(0.1191 0.1136) 0.1087 0.0698.
I0
8
For y
=2.3
3(0.2)
0.1087 3(0.1035 0.0988) 0.0945 0.0608
I1
8
For y
=2.6 3(0.2)
0.0962 3(0.0916 0.0874) 0.0836 0.0538
I2
8
We can put in the
table
2
2.3
2.6
y
f(y)
0.0698
Next
0.0608
0.0538
The Main Menu
اPrevious
Applying Simpson’s in ydirection
2
y
f(y)
0.0698
2.3
2.6
0.0608
0.0538
k
I f(a) f(b) 4f(x 1 ) f(x 3 ) ... f(x 2 n 1 ) 2f(x 2 ) f(x 4 ) ... f(x 2 n 2 ).
3
I
0.3
0.0698 0.0538 4(0.0608) 0.0367.
3
Next
The Main Menu
اPrevious