Transcript Transformations - MathInScience.info.
Transformations
MathScience Innovation Center Betsey Davis
Transformation= change
Isometry
Translation
Reflection
–
Over a line
Copy these down and skip lines to keep notes.
Notes graded today !
–
Around a point
–
Lines of Symmetry
Dilation
Transformations B. Davis 2005 MathScience Innovation Center
Isometry
Change that preserves lengths and angle measures Example: isometric Example: Not isometric Transformations B. Davis 2005 MathScience Innovation Center
Isometry
Isometry or not?
NOT !
Transformations B. Davis 2005 MathScience Innovation Center
Translations
By: Alisa
Use the tip of the cow’s ear as the starting point (0,4) -10 -5 By: Alisa -8 -6 -2 -4 8 6 4 2 5 10
Translated up New equation: f(x)+4 -10 -5 By: Alisa -8 -6 -2 -4 8 6 4 2 5 Original f(x) 10
Translation = slip or slide
Up Down Right Left Transformations B. Davis 2005 MathScience Innovation Center
-10 -5 Translated down New equation: f(x)-6 -2 -4 -6 -8 8 6 4 2 Original f(x) 5 10
-10 -5 Translated left -2 -4 New equation: f(x+7) -6 -8 8 6 4 2 5 10 Original f(x)
-10 -5 8 6 4 2 -6 -8 5 -4 -2 Original f(x) Translated right 10 New equation: f(x-8)
Transformations B. Davis 2005 MathScience Innovation Center
By Camille 2 -5 -2 Transformations B. Davis 2005 MathScience Innovation Center 5
By Camille 2 -5 -2 Transformations B. Davis 2005 MathScience Innovation Center 5
Reflection over a line: Flip
Up and down Left and right Transformations B. Davis 2005 MathScience Innovation Center
By Camille 2 -5 -2 Transformations B. Davis 2005 MathScience Innovation Center 5
2 -5 -2 By Camille Transformations B. Davis 2005 MathScience Innovation Center 5
Reflection about a point= rotation
Rather than flip over a line Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point= rotation
Rather than flip over a line Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point= rotation
Rather than flip over a line-
Line Reflection
The line is called the line
Reflection about a point= rotation
Rather than flip over a line Spin about a point
Line Reflection
Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point= rotation
Rather than flip over a line Spin about a point
Line Reflection
Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point= rotation
Rather than flip over a line Spin about a point
Line Reflection
Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point = rotation
30 degrees 90 degrees 180 degrees ¾ of a turn Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point = rotation
30 degrees 90 degrees 180 degrees ¾ of a turn Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point = rotation
30 degrees 90 degrees 180 degrees ¾ of a turn Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point = rotation
30 degrees 90 degrees 180 degrees ¾ of a turn Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point = rotation
30 degrees 90 degrees 180 degrees ¾ of a turn Transformations B. Davis 2005 MathScience Innovation Center
Reflection about a point = rotation
30 degrees 90 degrees 180 degrees ¾ of a turn Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Refection:
Over line About a point Transformations B. Davis 2005 MathScience Innovation Center
Lines of Symmetry
To count lines of symmetry, imagine how many times you can rotate image and match original Example: a square has 4 lines of symmetry but a rectangle only has 2 Transformations B. Davis 2005 MathScience Innovation Center
Lines of Symmetry
To count lines of symmetry, imagine how many times you can rotate image and match original Example: How many lines does a regular pentagon have?
Example: How many lines does a non-regular pentagon have?
Transformations B. Davis 2005 MathScience Innovation Center
By: Stephanie Hill
-10 -5 By: Stephanie Hill -6 -2 -4 8 6 4 2 5 10
-10 -5 By: Stephanie Hill -6 -2 -4 8 6 4 2 5 10
Dilation: Stretch or Shrink
Vertically: taller or shorter Horizontally: fatter or skinnier Transformations B. Davis 2005 MathScience Innovation Center
-10 -5 By: Stephanie -2 -4 -6 8 6 4 2 5 10
-10 -5 By: Stephanie -2 -4 -6 8 6 4 2 5 10
-10 -5 By: Stephanie -2 -4 -6 8 6 4 2 5 10
-10 -5 By: Stephanie Hill -6 -2 -4 8 6 4 2 5 10
-10 -5 By: Stephanie -2 -4 -6 8 6 4 2 5 10
-10 -5 By: Stephanie -2 -4 -6 8 6 4 2 5 10
-10 -5 By: Stephanie -2 -4 -6 8 6 4 2 5 10
Transformation= change
Isometry
Translation
Reflection
–
Over a line
–
Around a point
Hopefully you have notes now on all of this.
We add one more item now.
Notes graded today !
–
Lines of Symmetry
Dilation
Transformations B. Davis 2005 MathScience Innovation Center
Tessellation
Completely covering a plane with shapes with
–
No overlapping
–
No gaps
Here is one more.
Notes graded today !
Transformations B. Davis 2005 MathScience Innovation Center
Tessellation
M 2 W 2 X 6 2 U 2 D K 2 10 I B 7 K 2 5 W 6 Y 2 T 6 I C 4 7 5 M 6 X Z 4 2 R I 11 R J 5 E G 12 10 E F 3 4 D 4 6 2 S Y 4 6 Transformations B. Davis 2005 MathScience Innovation Center 11 Y 1 G 3 5 2 C 3 F 7 2 B 2 10 L I M E 1 11 B 1 10 I G 6 6 I E F 6 1 Z O 2 9 J 6 J 10
F 6 I 7 P 5 O 5 V 5 1 R 5 S 5 1 S 5 Q 7 5 T 5 6 G 7 1 B D 7 1 C 6 H 6 7 E 5 1 C 7 1 1 V 6 6 K 6 1 T A 5 E 7 4 I 6 7 G 6 1 Z J D 6 6 L 2 M 6 1 E 5 C 5 P R 6 5 2 Transformations B. Davis 2005 MathScience Innovation Center 5 K 5 2 R 6 1 T E 5 2 X J 6 1 A 6 1 2 P 1 M 1 T F 2 Z 4 U 1 I 3 P 1 J 1 I 1 S V 4 3 2
http://www.learnalberta.ca/Math/ math6web/math6shell.swf
This website reviews translations and line reflections.
http://michaelshepperd.tripod.com/resources/tessellations.html
This website shows tessellations.
Transformations B. Davis 2005 MathScience Innovation Center
Geometry in Art
Time to practice!
Rotation Or reflection about a point translation translation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Choose the best answer
A. translation B. line reflection C. point reflection or rotation D.Dilation
E. tessellation Transformations B. Davis 2005 MathScience Innovation Center
Sample Classwork
Chesterfield County Public Schools
Geometry: Page 399 # 5,6,7 # 21 ,22 (just name transformation) 23,24,25,42 Page 407 #3,4,5,12,13,14 Transformations B. Davis 2005 MathScience Innovation Center