Crop Canopy Sensors for High Throughput Phenomic Systems

Download Report

Transcript Crop Canopy Sensors for High Throughput Phenomic Systems

Crop Canopy Sensors for High Throughput Phenomic Systems Dr. Mike Schlemmer, Agronomist/Wheat Trial Manager

Bayer Field Phenomics Program Scope • Exploit the potential of phenomics to provide novel insights in plant response to genetic and environmental variation.

Intent • Integrate phenomics with genomic marker assisted selection to create a more efficient marker based selection process.

High Throughput Phenomic Sensor Suite Testing: Initial Phase Genotype x Nitrogen x Plant Density

Data Collection 26 Apr 6 May 14 May 3 Jun 16 Jul

Yield Results • • Yield Response plateaus, 40-60 lbs N ac -1 . Yield Response plateaus, 0.8-1.2 M plants ac-1.

Rapid Field Phenomic Sensor Suite

Optical Sensor

Crop Circle DAS43X

Companion Sensor 2 Chan Voltage Input/ Pulse Counter Downwelling PAR Humidity/Temp Upwelling PAR IRT

Rapid Field Phenomic Sensor Suite Measured Variables 2000 1500 1000 500 0 0 • • 3000 • • • • • • 2500

y = 773.74x - 198.3

r 2 = 0.8702

Reflectance from 3 bands, 10nm FWHM (Red, Red Edge(RE), NIR) Select Optical Indices - Canopy Chlorophyll Index(RE), NDVI.

Canopy Chl Content.

Green Leaf LAI.

Canopy Height (via optical methods and ultra-sonic).

Downwelling PAR, Upwelling PAR = Fractional PAR (fPAR).

3-second Running Average

6 5 4 3 2 1 0 1 459 917 1375 1833 2291 2749 3207 3665 4123 4581 5039 5497 5955 6413

Number of Readings

Data Collection Rate: 5Hz Relative Humidity.

Ambient Temperature, Canopy Temperature = Temperature Departure ( D T).

0.5

1 1.5

2

Chl Index Red Edge (CI RE )

2.5

3 3.5

4

What spectral regions are most sensitive to Chlorophyll Content. Green and Red Edge 0.5

0.4

0.3

• Coefficient of determination for the relationship between reflectance and chl • content for each wavelength. The peaks at 555 nm and 715 nm indicate these regions to be maximally sensitive to chl content. Those peaks show a strong linear relationship to chl content where the blue and red absorbance regions do not. 0.7

Palisade Cells Spongy mesophyll

60

Stoma Green -Refl .

Near IR-Refl .

Blue / Red Absorb .

Chlorophyll Upper and Lower Epidermis Air space

0.6

50 y NIR = 0.0019x + 52.433

R 2 = 0.0149

40 y RE = -0.0267x + 42.563

R 2 = 0.7628

Blue Green Red Red Edge NIR 30 y GRN = -0.0233x + 30.76

R 2 = 0.7473

20 0.2

0.1

0 400 10 450 500 550 600 650 Wavelength, nm 700 750 800 850 900 0 100 200 y Blue = -0.0035x + 12.985

R 2 = 0.2827

y Red = -0.0041x + 13.134

R 2 = 0.2472

300 400

Leaf Chl Content, mg m -2

500 600 700

Canopy Chl Content as a function of the Red Edge Chl Index.

• • • Canopy Chl at the time of flowering may reach a response plateau near 100 lbs N ac -1 . Yield Response plateaus near 40-60 lbs N ac -1 .

N Partitioning / Translocation? Grain Protein Content?

Fractionally Absorbed PAR (fAPAR).

• • fAPAR was derived by calculating the ratio of upwelling to downwelling PAR, both measured at the height of the sensor. Provides an indication as to the efficiency of Photosynthesis and Net Primary Production.

Leaf Area Index as a function of NDVI • • Relationship between the NDVI function and leaf area index is not linear but reaches it’s limit more gradually at higher LAI’s. Green LAI is an exponential function of NDVI linearly related to measured LAI.

Canopy Height • • Plant height was determined by subtracting calculated sensor to target distance from measured sensor height.

Sensor to target distance was calculated using square root of inverse NIR irradiance.

Holland et al., IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS) , V5, N6, 2012

Canopy Temperature Departure • • Delta Temperature was calculated by subtracting IRT measured canopy temperature from measured ambient temperature. Aerial IR cameras were used to acquire late season imagery. Stay green and late season varieties are clearly identifiable.

Opportunities with Phenomic Sensor Systems in Precision Agriculture and Plant Breeding: • • Develop Phenomic markers to compliment Genomic markers that assist with efficient breeder selections.

Variety Plant Density BL110002

800

NE06545 Overland

1200 800

Robidoux Wesley

1000 1200

N

40 60 40 40 40

Average Yld

+ 0 -

chl

0 0 0 +

fPAR

0 + + 0

LAI

+ +

Height

0 + +

Delta T

0 0 0 + Utilize Greenhouse Lemnatec system to incorporate phenomic data into decision support system. Move this concept to the field scale.

• Future advances in high speed data capture, transfer, and analysis should enable on-the-go image based phenomic systems, providing more morphological information.

• UAV’s should be exploited to deliver both image and spectral sensor based systems to the field.

Parallel Phenomic Research within Bayer • Image Recognition Approach (Field and Greenhouse).

• Lemnatec Greenhouse Activities.

Additional Information Sampling Date GDD: 26 Apr 12 – 835.7

6 May 12 – 944.3

14 May 12 – 1068.7

3 Jun 12 – 1441.9