transformasi ppt

Download Report

Transcript transformasi ppt

Chapter 4
2-D Transformations
 Cartesian coordinates
 Linear transformations, affine transformations
 Homogeneous coordinates
 Translations
 Scaling
 Rotation
 Reflection
 Combinations of transformations
 Animations
1
Cartesian coordinates
 A 2D point is represented by a 2-tuple
For convenience, the 2-tuple often
written as (x, y).
 x
 y .
 
 A 2-tuple can also be interpreted as a
vector. The 2-tuple defines the direction
and length of the vector, but not the
position.
(x, y)
y
x
(x, y)
y
x
2
Translation
 A translation moves a point to a new position by adding a
displacement vector to it.
 x'  x  Tx 
 y'   y   T .
     y
x'  x  Tx , y'  y  Ty
Eg, The following translates the point
3
13 to
 
7 
7 
 
(3,13)
7  3   4 
7  13   6
     
4
 6
 
(7,7)
3
Linear Transformations
 A linear transformation moves a point to a new position
by multiplying it with a non-singular matrix.
 x'  a b   x 
 y'   c d   y .
  
 
x'  ax  by, y'  cx  dy
Eg, The following transforms the point (2, 3) to (3, 13)
(3,13)
 3  0 1 2
13  2 3 3
  
 
 0 1
2 3


(2,3)
A non-singular matrix, M, has the inverse M-1 such that
MM-1 =M-1M= I. It denotes an one-to-one mapping.
4
Affine Transformations
 An affine transformation is a linear transformation
followed by a translation. Its 2D general form is
 x' a b   x  Tx 
 y '   c d   y   T 
  
   y 
 Affine transformations preserve lines.
 Many geometric movements of objects, eg,
translations, rotations, and scalings are affine
transformations.
5
Homogeneous coordinates
 A point in homogeneous coordinates (x, y, w), w ≠ 0,
corresponds to the 2D point (x/w, y/w) in Cartesian
coordinates.
 Conceive that the Cartesian coordinates axes lies on the
plane of w = 1. The intersection of the plane and the line
connecting the origin and (x, y, w) gives the corresponding
Cartesian coordinates. w
(x, y, w)
y
y
(x/w, y/w, 1)
x
w=1
x
w=0
 For example, both the points (6, 9, 3) and (4, 6, 2) in the
homogeneous coordinates corresponds to (2, 3) in the
Cartesian coordinates.
Conversely, the point (2, 1) of the Cartesian
corresponds to (2, 1, 1), (4, 2, 2) or (6, 3, 3) of the
homogeneous
 Homogeneous coordinates are used in many graphics
systems because all practical transformations can be
expressed as matrix multiplications. Such uniformity
enhances efficiency.
7
 Translation
move an object to a new position
(3,4)
(1,3)
(x’, y’)
(x,y)
(7,2)
(5,1)
(3,2)
(1,1)
 The coord. of the new position: x’ = x + 2,
In general, x’ = x + Tx, y’ = y + Ty
 In homogeneous coordinates
 x'  1 0 Tx   x 
1 0 2 5 7
 y '   0 1 T   y . Eg, 0 1 1 1  2
y  
  

   
 w' 0 0 1   w
0 0 1 1 1
y’ = y + 1
8
 Scaling relative to the origin (changing size)
(1,3)
(x’, y’)
(x,y)
(2,3/2)
(5,1)
(1,1)
(10,1/2)
(2,1/2)
 The new position: x’ = 2x, y’ = y/2
In general, x’ = Sx  x, y’ = Sy  y
 In homogeneous coordinates
 x'   S x
 y'   0
  
 w'  0
0
Sy
0
0  x 
2
0  y . Eg, 0
0
1  w
0
1
2
0
0 1  2 
0 3   3 2 
1 1  1 
9
 Rotation about the origin
(x’,y’)
r

r

(x,y)
x=r cos
The angle, , is measured from
the original vector to the new
one in counterclockwise.
The parameters of sin() and cos()
are provided in radians.
 radians is 180o.
 In Cartesian, x’ = r cos(+)
= r cos cos  r sin sin
= x cos - y sin
y’ = r sin(+)
= r sin cos + r cos sin
= x sin + y cos
10
 Eg, to rotate 45o (/4 radian)
(2.8, 4.2)
(1,3)
(-1.4, 2.8)
(x,y)
(x’, y’)
(0,1.4)
(5,1)
(1,1)
 sin /4 = cos /4 = 0.7071
x’ = x cos - y sin = 0.7071 (x - y)
y’ = x sin + y cos = 0.7071 (x + y)
 In homogeneous coordinates
 x'  cos
 y '    sin 
  
 w'  0
 sin 
cos
0
0  x 
.707  .707 0 5 2.8
0  y . Eg, .707 .707 0 1  4.2
 0

1  w
0
1 1  1 11
 Conduct a sequence of transformations
 Translate the right-angle vertex
to the origin (Tx = -1, Ty = -1)
(1,3)
 x '  1 0 T x   x 
 y '   0 1 T   y .
y  
  
 w' 0 0 1   w
(5,1)
(1,1)
(0,2)
 Rotate 45o (/4 radian)
sin /4 = cos /4 = 0.7071
 x"  cos
 y"   sin 
  
 w"  0
 sin 
cos
0
(0,0)
0  x ' 
0  y ' 
1  w'
(-1.4,1.4)
(4,0)
(2.8,2.8)
 x"  cos  sin  0  x'  cos  sin 
 y"   sin  cos 0  y '    sin  cos
  
  
 w"  0
0
1  w'  0
0
cos  sin  Tx cos  T y sin    x 
  sin  cos Tx sin   T y cos   y 
 0
  w
0
1
0 1 0 Tx   x 
0 0 1 T y   y 
1 0 0 1   w
 The computation of [ ] from [ ] [ ] is called matrix
multiplication. The general form is:
a b   e
c d   g


f  ae  bg af  bh


h  ce  dg cf  dh
 A sequence of transformations can be lumped in a single
matrix via matrix multiplications
13
 In OpenGL, all the model transformations are
accumulated in the current transformation matrix
(CTM). All vertices of an object will be transformed via
this matrix before the object is drawn.
Vertices
* * *
* * *


* * *
Vertices
CTM
Stack
 A system stack is provided for storing the backup copies
of the CTM during execution.
 We usually save the CTM in the stack before the
drawing of a transformed object. And restore the
original CTM afterwards.
14
Vertices
* * *
* * *


* * *
Vertices
CTM
* * *
* * *


* * *
..
.
(before)
Stack
 To save a copy of the CTM in the stack
glPushMatrix();
Vertices
* * *
* * *


* * *
CTM
(after)
* * *
* * *


* * *
Vertices
* * *
* * *


* * *
..
.
Stack
15
Vertices
* * *
* * *


* * *
Vertices
* * *
* * *


* * *
* * *
* * *


* * *
CTM
(before)
. . .
Stack
 To overwrite the CTM with the top matrix in the stack
glPopMatrix();
Vertices
* * *
* * *


* * *
CTM
(after)
Vertices
* * *
* * *


* * *
. . .
Stack
16
 To specify a translation
glTranslatef( double Tx, double Ty, 0.0)
 The system first generates the matrix representing the
translation. Then post multiplies this matrix with the
CTM. Finally overwrites the CTM with the result.
Vertices
* * *
* * *


* * *
CTM
Vertices
* * *
* * *


* * *
CTM
Vertices

1 0 Tx 
0 1 Ty 


0 0 1 
Before
After
Vertices
17
 Example
//draw a white head at (0,0)
glColor3f( 1.0, 1.0, 1.0);
draw_head();
//draw a green head at (-2,-1)
glColor3f( 0.0, 1.0, 0.0);
glPushMatrix();
glTranslatef( -2.0, -1.0, 0.0);
draw_head();
glPopMatrix();
Progressive Translation
glColor3f( 1.0, 1.0, 1.0); //draw a title
hkgluBitMapString( -1.9, 1.8, "Translation of (-2, -1)” );
18
 To specify a scaling
glScalef( double Sx, double Sy, 1.0)
Generate a matrix for the
scaling. Post multiply it with
the CTM
//Scale by Sx = 1.5, Sy = 2
glPushMatrix();
glScalef( 1.5, 2.0, 1.0);
draw_head();
glPopMatrix();
Progressive Scaling
In general, an object moves
away from the origin when
scaled up, moves towards
when scaled down
19
 To specify a rotation
glRotatef( double degree, 0.0, 0.0, 1.0)
glPushMatrix();
glRotatef( 45.0, 0.0, 0.0, 1.0);
draw_head();
glPopMatrix();
(Note that the angles provided
to gl functions are expressed in
degrees instead of radians.)
Progressive Rotation
20
 First to scale( Sx =1.5, Sy =2) and then translate the
picture to (-2, -1).
 x'   Sx
 y'   0
  
 w'  0
 x"  1
 y"  0
  
 w" 0
Vertices
0  x 
Sy 0  y 
0 1  z 
0 Tx   x' 1 0 Tx   Sx 0 0  x 
1 Ty   y '  0 1 Ty   0 Sy 0  y 
0 1   z '  0 0 1   0 0 1  z 
0
* * *
* * *


* * *
CTM
Vertices

1 0 Tx 
0 1 Ty 


0 0 1 

 Sx 0 0
 0 Sy 0


 0 0 1
 Note that the transformations are specified in reverse
order: first call glTranslatef(...), and then glScalef(…)
 The program
glPushMatrix();
glTranslatef( -2.0, -1.0, 0.0);
glScalef( 1.5, 2.0, 1.0);
draw_head();
glPopMatrix();
Progressive (Scaling + Translation)
22
 Scaling relative to a fix point
(xf, yf)
//Scaling relative to the
//apex of the nose at (xf, yf)
glPushMatrix();
glTranslatef( xf, yf, 0.0);
glScalef( sx, sy, 1);
glTranslatef( -xf, -yf, 0);
draw_head();
glPopMatrix();
Scaling relative to a fix point
23
 Rotation about a pivot point
(xf, yf)
//Rotate 90 degree about
//the apex of the nose
glPushMatrix();
glTranslatef( xf, yf, 0.0);
glRotatef( 90., 0.0, 0.0, 1.0);
glTranslatef( -xf, -yf, 0);
draw_head();
glPopMatrix(); Rotation about a pivot point
24
 Reflection about the x axis
(x,y)
 x'  1 0 0  x 
 y '   0  1 0  y .
  
 
 w' 0 0 1  w
(x,-y)
 The transformation matrix is the same as scaling matrix
with Sx = 1 and Sy = 1. Thus, the reflection about the x
axis can be achieved by calling
glScalef( 1.0, -1.0, 1.0)
 Similarly, the reflection about the y axis is achieved by
calling
glScalef( -1.0, 1.0, 1.0)
25
Example
glPushMatrix();
glScalef( 1, -1, 1);
draw_head();
glPopMatrix();
Reflection about x-axis
26
y =mx+b
 Reflection along a line
 Translate (0, -b) so that the line
passes through the origin
 Rotate the line onto the x axis by -o
 Reflect about the x axis
 Backward rotate
 backward translate
b

  tan1 (m)
(Be reminded that these operations must be specified
in reverse order.)
27
// To draw the reflection of the head about y = 2x + 0.5
// (we need to convert theta from radians to degrees)
double m = 2.0, b = .5, theta = atan(m)*180.0/3.1416;
glPushMatrix();
glTranslatef( 0, b, 0.);
glRotatef( theta, 0.0, 0.0, 1.0);
glScalef( 1, -1, 1);
//Reflect
glRotatef( -theta, 0.0, 0.0, 1.0);
glTranslatef( 0, -b, 0.);
draw_head();
glPopMatrix();
28 line
Reflection against an arbitrary