Chapter 1 Thermal radiation and Planck`s postulate Ex
Download
Report
Transcript Chapter 1 Thermal radiation and Planck`s postulate Ex
Chapter 1 Thermal radiation and Planck’s postulate
1.2 thermal radiation
Thermal radiation: The radiation emitted by a body as a result of temperature.
Blackbody : A body that surface absorbs all the thermal radiation incident on
them.
Spectral radiancy RT ( ): The spectral distribution of blackbody radiation.
RT ( )d : represents the emitted energy from a unit area per unit time
between and d at absolute temperature T.
1899 by Lummer and
Pringsheim
Chapter 1 Thermal radiation and Planck’s postulate
The spectral radiancy of blackbody radiation shows that:
(1) little power radiation at very low frequency
(2) the power radiation increases rapidly as ν increases from very
small value.
(3) the power radiation is most intense at certain maxfor particular
temperature.
(4) max , RT ( ) drops slowly, but continuously as ν increases
, and RT ( ) 0.
(5) max increases linearly with increasing temperature.
(6) the total radiation for all ν ( radiancy RT RT ( )d )
0
increases less rapidly than linearly with increasing temperature.
Chapter 1 Thermal radiation and Planck’s postulate
4
8
2 o
4
Stefan’s law (1879):RT T , 5.67 10 W / m K
Stefan-Boltzmann constant
Wien’s displacement (1894): max T
1.3 Classical theory of cavity radiation
Rayleigh and Jeans (1900):
(1) standing wave with nodes at the metallic surface
(2) geometrical arguments count the number of standing waves
(3) average total energy depends only on the temperature
one-dimensional cavity:
one-dimensional electromagnetic standing wave
E ( x, t ) E0 sin(
2x
) sin( 2 t )
Chapter 1 Thermal radiation and Planck’s postulate
for all time t, nodes at 2x / n , n 0,1,2,3.......
x0
x a 2a n 2a / n nc / 2a
standing wave
N ( )d : the number of allowed standing wave between ν and ν+dν
n ( 2a / c ) dn ( 2a / c )d
N ( )d 2 dn (4a / c )d
two polarization states
d ( 2a / c )( d )
d ( 2a / c )
0
n
Chapter 1 Thermal radiation and Planck’s postulate
for three-dimensional cavity
r ( 2a / c ) dr ( 2a / c )d
the volume of concentric shell r r dr
2a 2 2 2a
2a
) v ( )d 4 ( ) 3 2 d
c
c
c
1
8a 3 2
8V 2
2
N ( )d 2 4r dr
d
d
8
c3
c3
The number of allowed electromagnetic standing wave in 3D
4r 2 dr 4 (
Proof:
( x / 2) cos / 2
( y / 2) cos / 2
λ/2
propagation
direction
( z / 2) cos / 2
E ( x , t ) E 0 x sin( 2x / x ) sin( 2 t )
E ( y , t ) E 0 y sin( 2y / y ) sin( 2 t )
E ( z , t ) E 0 z sin( 2z / z ) sin( 2 t )
λ/2
nodal
planes
Chapter 1 Thermal radiation and Planck’s postulate
for nodes:
x 0, a ,2 x / x nx , nx 1,2,3.....
y 0, a ,2 y / y n y , n y 1,2,3.....
z 0, a ,2 z / z nz , nz 1,2,3.....
( 2a / ) cos n x , ( 2a / ) cos n y , ( 2a / ) cos nz
( 2a / ) 2 (cos 2 cos 2 cos 2 ) n x2 n 2y nz2
2a /
n x2 n 2y nz2
c / (c / 2a ) n x2 n 2y nz2 (c / 2a )r
r
n x2 n 2y nz2 ( 2a / c ) dr ( 2a / c )d
N ( r )dr (1 / 8)4r 2dr r 2dr / 2 N ( )d
N ( )d ( / 2)( 2a / c )3 2d 4 (a / c )3 2d
considering two polarization state
N ( )d / V 2 4 (1 / c )3 2d
N ( ) 8 2 / c 3 : Density of states per unit volume per unit frequency
Chapter 1 Thermal radiation and Planck’s postulate
the law of equipartition energy:
For a system of gas molecules in thermal equilibrium at temperature T,
the average kinetic energy of a molecules per degree of freedom is kT/2,
k 1.38 1023 joule / oK is Boltzmann constant.
average total energy of each standing wave : 2 KT / 2 KT
the energy density between ν and ν+dν:
8 2
T ( )d 3 kTd Rayleigh-Jeans blackbody radiation
c
ultraviolet catastrophe
Chapter 1 Thermal radiation and Planck’s postulate
1.4 Planck’s theory of cavity radiation
Planck’s assumption: (T , ) and kT , 0
0
the origin of equipartition of energy:
Boltzmann distribution P ( ) e / kT / kT
P ( )d : probability of finding a system with energy between ε and ε+dε
P ( )d
P ( )d
0
0
e / kT
1
/ kT
P
(
)
d
d
(
kT
)
e
|0 1
0
0 kT
kT
/ kT
e
0 P ( )d 0 kT d
1
/ kT
[ ( kT )e
|0 ( kT )e / kT ] kT
0
kT
kT
Chapter 1 Thermal radiation and Planck’s postulate
Planck’s assumption: 0, ,2 ,3 ,4 ..............
(1) 0 kT
small ν
(2) large 0
large ν
h
h 6.63 10
34
joul s
kT , kT
kT , kT
Planck constant
Using Planck’s discrete energy to find
nh , n 0,1,2,3......
nh nh / kT
e
kT
n0
n0
kT
1 nh / kT
P
(
)
e
n 0
n 0 kT
h / kT
p( )
kT , kT
ne
n 0
e
n 0
n
n
Chapter 1 Thermal radiation and Planck’s postulate
d
ln e n
d n 0
kT [
e
n
d
d
e
n 0
e
n
d n
e
n 0 d
n
e
n
n 0
n 0
d
d
ln e n ] h
ln e n
d n 0
d n 0
1 e e 2 e 3 .....
n 0
X e
1 X X 2 X 3 ....... (1 X ) 1 (1 e ) 1
d
d
ln( 1 e ) 1 ( h )
[ ln( 1 e )]
d
d
1
h
h
h (
)
e
1 e
e 1 e h / kT 1
h
h kT e h / kT 1 h / kT kT
h kT e h / kT h 1 0
n
n
e
n 0
n
e
n 0
Chapter 1 Thermal radiation and Planck’s postulate
energy density between ν and ν+dν:
8 2
h
T ( ) 3 h / kT
c
e
1
T ( )d T ( )d
d
c
8hc
1
T ( ) T ( )
T ( ) 2
d
5 e hc / kT 1
dV
Ex: Show T ( ) (4 / c) RT ( )
dA rˆ dA cos
solid angle expanded by dA is
4r 2
4r 2
spectral radiancy:
dA cos
RT ( ) T ( )dV (
) /( dA t )
4r 2
2
/2
ct
cos 2
d d T ( )
r sin 2 dr
2
0
0
0
4r t
c
T ( )
4
dA
r
Chapter 1 Thermal radiation and Planck’s postulate
Ex: Use the relation RT ( )d (4 / c)T ( )d between spectral radiancy
and energy density, together with Planck’s radiation law, to derive
Stefan’s law RT T 4 , 2 5 k 4 / 15c 2 h3
c
2 h 3
RT RT ( )d T ( )d 2 h / kT
d
0
0
0
4
c
e
1
2 ( kT )4 x 3
2
dx
x h / kT
c
h 3 0 e x 1
3
x
4
2 ( kT )4 4
4
x
/(
e
1
)
dx
/ 15
2
T
0
3
c
h
15
2 5 k 4
15c 2 h3
Chapter 1 Thermal radiation and Planck’s postulate
Ex: Show that
I
0
(1 e
0
x 3 (e x 1)1 dx 4 / 15
1
x (e 1) dx
3
x 1
)
x
1 e
x
e
x 3 e x (1 e x ) 1 dx
0
2 x
..... e nx
n 0
I
0
3
x e
x
e
nx
n 0
dx x e
n 0
3
( n 1) x
0
1
3 y
y
e dy
4 0
n 0 ( n 1)
dx
3
3
( n 1) x
e y
Set y ( n 1) x dx dy /( n 1) x y /( n 1) , e
0
y 3 e y dy 6
by consecutive partial integration
1
1
I 6
6
4
4
(
n
1
)
n 0
n 1 n
1 2
F(x ) 2
6
n 1 n
2
x
1
?
4
n
n 1
1
1
1 4
F(x )
8 2 48 4 4
5
90
n 1 n
n 1 n
n 1 n
4
x
4
4
F : Fourier series expansion
2
Chapter 1 Thermal radiation and Planck’s postulate
Ex: Derive the Wien displacement law ( max T ), maxT 0.2014hc / k .
T ( )
8
hc
5 e hc / kT 1
max T
d T ( )
5
hc
e hc / kT
0 hc / kT
0
hc / kT
2
d
e
kT (e
1)
x
ex 1
5
x hc / kT
Solve by plotting: find the intersection point for two functions
x
y1 1 , y2 e x
Y
5
y1 1 x / 5
intersection points:
x 0, x 4.965
maxT 0.2014hc / k
y2 e x
X
5
Chapter 1 Thermal radiation and Planck’s postulate
1.5 The use of Planck’s radiation law in
thermometry
optical pyrometer
(1) For monochromatic radiation of wave length λ the ratio of the spectral
intensities emitted by sources at T1 o K and T2 o K is given by
e hc / kT1 1
e hc / kT2 1
T1 : standard temperature ( Au Tmelting 1068oC )
T2 : unknown temperature
(2) 3o K blackbody radiation supports the big-bang theory.
Chapter 1 Thermal radiation and Planck’s postulate
1.6 Planck’s Postulate and its implication
Planck’s postulate: Any physical entity with one degree of freedom whose
“coordinate” is a sinusoidal function of time
(i.e., simple harmonic oscillation can posses
only total energy nh
Ex: Find the discrete energy for a pendulum of mass 0.01 Kg suspended
by a string 0.01 m in length and extreme position at an angle 0.1 rad.
1
2
g
1
l 2
9.8
1.6(1 / sec)
0.1
mgh mg (1 cos ) 0.01 9.8 0.1 (1 cos 0.1) 5 10 5 ( J )
E h 6.63 10
34
1.6 10
33
E
10 33
29
(J )
2
10
E
5 10 5
The discreteness in the energy is not so valid.