Transcript Chaotic Dynamical Systems
Chaotic Dynamical Systems
Experimental Approach Frank Wang
Striking the same key
Graphic Method
Square root function f(x)=sqrt(x) Identity function y=x Vertical to the curve and horizontal to the line
Square Root Function
Logistic Difference Equation
x n
1
x n
( 1
x n
)
Function Notation
f
(
x
)
x
( 1
x
) seed x0 orbit
f
(
x
0 ),
f
(
f
(
x
0 )),
f
(
f
(
f
(
x
0 ))),
lambda=2.5
lambda=3.1
lambda=3.8
lambda=3.8 histogram
Fixed Point and Periodic Point
Fixed point:
F
(
x
)
x
Periodic point:
F
(
F
(
x
))
x F
(
F
(
F
(
x
)))
x
Period-1
Period-2
Bifurcation Diagram
Period 3 Implies Chaos
Sarkovskii’s Theorem (1964)
3 5 7 2 3 2 5 2 7 2 2 3 2 2 5 2 2 7 2 3 3 2 3 5 2 2 7 2 3 2 2 2 1
Filled Julia Set
Quadratic Map
Q c
:
z
z
2
c
Filled Julia Set
J c
{
z
C
||
Q c n
(
z
) | }
Sonya Kovalevskaya
Introduction of i to a dynamical system.
Kovalevskaya Top
C=0.33+0.45 i
C=0.5+0.5 i
C=0.33+0.57 i
C=0.33+0.573 i
C=-0.122+0.745 i
C= i
C=0.360284+0.100376 i
C=-0.75+0.1 i
Mandelbrot set and bifurcation
Mandelbrot set
M
{
c
C
||
Q c n
( 0 ) | }
Q c
:
z
z
2
c
Period 3 window
Magnification of the Mandelbrot set
Period 7 bulb (2/7)
Period 8 bulb (3/8)
Period 9 bulb (4/9)
Period 13 bulb (6/13)
Julia set for (1+2 i) exp(z)
Julia set for 2.96 cos(z)
Julia set for (1+0.2 i) sin(z)