MS Powerpoint

Download Report

Transcript MS Powerpoint

Introduction to Optical Electronics
Semiconductor Photon Detectors (Ch 18)
Semiconductor Photon Sources (Ch 17)
Lasers (Ch 15)
Laser Amplifiers (Ch 14)
Photons in Semiconductors
(Ch 16)
Photons & Atoms (Ch 13)
Quantum (Photon) Optics (Ch 12)
Resonators (Ch 10)
Electromagnetic Optics (Ch 5)
Wave Optics (Ch 2 & 3)
Ray Optics (Ch 1)
Optics
Physics
Optoelectronics
1
Laser Amplilfiers
Amplifier
Input
light
  d

0
Output
light
z
z  dz
d
2
Gain & Phase Coefficients
Lorentzian Lineshape
 / 2 

 ( )   ( 0 )
2
2
  0     / 2 
2

2
where   0   N  2
 4 t 
sp

E( z )
H ( )
0



E( z ) / z

0
1
 ( )   ( )  j ( )
2
Using the Kramers-Kronig Relationship:
0
  0
Lorentizian:  ( ) 
  

3
Exercise 13.1-1
Attenuation and Gain in a Ruby Laser Amplifier
a)
Consider a ruby crystal with two energy levels separated by an energy
difference corresponding to a free-space wavelength 0 = 694.3 nm, with
a Lorentzian lineshape of width  = 60 GHz. The spontaneous lifetime
is tsp = 3 ms and the refractive index of ruby is n = 1.76. If N1 + N2 = Na =
1022 cm-3, determine the population difference N = N2 – N1 and the
attenuation coefficient at the line center (0) under conditions of thermal
equilibrium (so that the Boltzmann distribution is obeyed) at T = 300 K.
b)
What value should the population difference N assume to achieve a gain
coefficient (0) = 0.5 cm-1 at the central frequency?
c)
How long should the crystal be to provide an overall gain of 4 at the
central frequency when (0) = 0.5 cm-1 ?
4
Rate Equations
Understanding Lifetimes
2
– 1 and 2 are overall lifetimes for atomic
energy levels 1 and 2.
– Lifetime of level 2 has two contributions
(where rates are inversely proportional to
decay times)
and
   
1
2
1
21
2
 21
tsp
 nr
1
1
 20
1
20
 211  tsp1  nr1
 Population densities N1 and N2 will
vanish unless another mechanism is
employed to increase occupation
5
Rate Equations
Absence of Amplifier Radiation
• Pumping Rates – R1 & R2 defined
R2
2
R1
• Rate Equations:
1
d N2
N2
 R2 
dt
2
2
d N1
N N
  R1  1  2
dt
1  21
• Steady-State Conditions
d Ni
0
dt
 21
R2
2
1
R1
 1 
N 0  R2 2 1 
  R1 1
  21 
where N 0  N 2  N1 in steady-state
1
 20
6
Exercise 13.2-1
Optical Pumping
Assume that R1 = 0 and that R2 is realized by exciting atoms from the
ground state E = 0 to level 2 using photons of frequency E2 / h absorbed
with a transition probability W. Assume that 2 ≈ tsp, and 1 << tsp so that
in steady state N1 ≈ 0 and N0 ≈ R2 tsp. If Na is the total population of
levels 0, 1, and 2, show that R2 ≈ (Na – 2N0)W, so that the population
difference is N0 ≈ Na tsp W / (1 + 2 tsp W)
7
Rate Equations
Presence of Amplifier Radiation
•
Pumping Rates
2
d N2
N    I
 R2  2 
 N2  N1 
dt
2
h
R2
d N1
N N    I
  R1  1  2 
 N2  N1 
dt
1  21
h
•
Four Case Studies
Wi
1
 21
2
1
R1
1
 20
(Homogeneous Broadened Transitions)
1. I = 0, R2(t) = R20 u(t), R1(t) = 0
2. 1 = 0, R2(t) = R20 u(t)
3. 1 = 0, R2(t) = R20, I = Pulse
4. Steady State -  / t  0
where Wi      
I
  
h
8
Case 1
I = 0, R1(t) = 0, R2(t) = R20 u(t)
d N2
N2    I
 R20 

 N2  N1 
dt
2
h
d N2
N
 R20  2
dt
2
 N 2  t   R20 2 1  e  t / 2 
d N1
N N    I
  R1  1  2 
 N2  N1 
dt
1  21
h
N1  t  


2
 /
1
R201 1  1 2 et / 
et / 
 21
1  1 /  2
 1  1 /  2

1
2
9
Solving Differential Equations
y ''(t )  a y '(t )  b y(t )  f (t )
• Obtain Forms
– General Form
– Particular Form
• Homogeneous (Natural) and Particular (Forced) Response
– Particular Solution
• y p (t )  Particular Form
(1)
• y(2)
p (t )  a y p (t )  b y p (t )  f (t )  Coefficients
– Note: initial conditions not set
– Homogeneous
• yh (t )  General Form
Typically, try yh (t )  e t in
y h2 (t )  a yh1 (t )  b yh (t )  0
yielding  2  a   b  0
• Use initial conditions (removes the effect of the particular solution’s i.c.)
–
–
y(0)  yh (0)  y p (0)
y (1) (0)  y h(1) (0)  y (1)
(0)
p
10
Case 1
I = 0, R1(t) = 0, R2(t) = R20 u(t)
N 2  t   R20 2 1  e  t / 2 
N1  t  


2
 /
1
R201 1  1 2 et / 
et / 
 21
1  1 /  2
 1  1 /  2

1
Lifetime Ratio:  2 / 1  2
2
Lifetime Ratio:  2 / 1  0.5
2.5
2.5
R20 2
2
N2
2
N1
1.5
1.5
R2 (t )  R20u t 
1
1
2
R20 1
0.5
 21
0.5
N1
1
0
1
2
time (t /  2 )
3
4
5
N2
1
0
1
2
3
time (t /  2 )
4
115
Case 2
1 = 0, R2(t) = R20 u(t)
d N2
N I
 R20  2    N 2  N1 
dt
 2 h
d N2
N I
 R20  2   N 2
dt
 2 h
t  I 

 1 v  
R20 2
1  e  2  Is  
 N2 t  

1  I / I s 


h
where I s 
 2
d N1
N N    I
  R1  1  2 
 N2  N1 
dt
1  21
h
N1 t   ?
12
Case 2
1 = 0, R2(t) = R20 u(t)
t  I 

 1 v  
R20 2
1  e  2  I s  
N2  t  

1  I / I s 


Is 
h
 2
2.5
2
R20 2
N2  I  0
1.5
R2 (t )  R20u t 
1
0.5
N2  I  1.5I s 
1
0
1
2
time (t /  2 )
3
4
5
13
Case 3
1 = 0, R2(t) = R20, I = Pulse
d N2
N I
 R20  2    N 2  N1 
dt
 2 h
d N2 1    2 
d N 2 1  I 
 1 
I  N 2 
 1   N 2  R20
dt
 2  h 
dt
 2  Is 
t
 '


R20 2
2
 I / I s  e  1
 N2 t  
1  I / I s 



where  2' 
2
1  I0 / I s
and I  t   I 0 u  t   u  t  T  
14
Case 3
1 = 0, R2(t) = R20, I = Pulse
R20 2 
 t /  2'
N2 t  
I / I s  e
 1



1  I / I s 
where  2' 
2
1  I0 / I s
and I  t   I 0 u  t   u  t  T  
2.5
N2  t 
R20 2
2
1.5
2
 2'
1
 I  1.5Is 
0.5
1
0
1
2
time (t /  2 )
3
4
5
15
Approach to Case 4
Steady-State Rate Equations
Rate Equations describe the rates of change of the
population densities N1 and N2 as a result of
pumping, radiative, and nonradiative transitions.
1.
Determine rate equations in the absence of Amplifier
Radiation (i.e., no stimulated emission or absorption)
–
2.
Find steady-state population difference N0 = N2 – N1
Determine rate equations in the presence of Amplifier
Radiation (non-linear interactions)
–
–
Find steady-state population difference N = f(N0)
Determine the saturation time constant s
16
Case 4: Steady State
• Pumping Rates
2
d N2
N
 R2  2  N 2Wi  N1Wi
dt
2
R2
d N1
N N
  R1  1  2  N 2Wi  N1Wi
dt
1  21
  
where  s   2   1 1  2 
  21 
  
and N 0  R2 2 1  1   R1 1
 2 
• Steady-state Population Differences
• N = N2-N1
• N0 = N2-N1 w/o amp. rad.
• s – Saturation Time Constant
2
1
 20
1
R1
• Steady State
d Ni
N0
0 N 
dt
1   sWi
 21
Wi -1
N
N0
N0
2
0.1
s
1
s
Wi
10
s
17
Rate Equations in the Absence of Amplifier Radiation
• Four-Level Pumping Schemes
3
Rapid decay
Short-lived level
 32
Long-lived level
2
R
Wi
Laser
Pump
2
-1
 21
Short-lived level
1
Rapid decay
0
 20
1
Ground state
• Three-Level Pumping Schemes
3
Rapid decay
R
Short-lived level
 32
Long-lived level
2
Pump
Laser
1
Wi
2
-1
 21
Ground state
18
Rate Equations in the Absence of Amplifier Radiation
• Four-Level Pumping Schemes
3
Rapid decay
N0
N
1   sWi
N0 
s 
tsp N aW
1  tspW
tsp
1  tspW
Short-lived level
 32
Long-lived level
2
R
Wi
Laser
Pump
2
-1
 21
Short-lived level
1
Rapid decay
0
 20
1
Ground state
• Three-Level Pumping Schemes
3
N0 
s 
N a  tspW  1
R
1  tspW
Pump
2tsp
1  tspW
Rapid decay
Short-lived level
 32
Long-lived level
2
Laser
1
Wi
2
-1
 21
Ground state
19
Population Inversion
N  N2  N1
Population
Difference
Four-Level Laser
N0
N
1   sWi
Three-Level Laser
N0
N
1   sWi
Steady-State
Difference
N0 
N0 
tsp NaW
1  tspW
N a  tspW  1
1  tspW
Saturation Time
Constant*
s 
s 
tsp
1  tspW
2tsp
1  tspW
*What is the small-signal approximation?
20
Exercise 13.2-3
Pumping Powers in Three- and Four-Level Systems
a)
Determine the pumping transition probability W required to achieve a
zero population difference in a three- and a four-level laser amplifier
b)
If the pumping transition probability W = 2 / tsp in the three-level
system and W = 1 / 2 tsp in the four-level system, show that N0 = Na / 3.
Compare the pumping powers required to achieve this population
difference.
21
Amplifier Nonlinearity
Gain Coefficient
 ( ) 
 0 ( )
1   / s ( )
2
where  0 ( )  N 0 ( )  N 0
g ( )
8 tsp
Note: 0() is called the smallsignal gain coefficient. Why?
0
1
0.5
0.01
0.1
1
10
100
s
22
Amplifier Nonlinearity
s
   z    z     (0)  (0) 


ln
  ln
  0z
s
s   s
s 

10
d
Gain 12
8
Y  X e 0d
 0d
 ln Y  Y   ln X  X    0 d
Output Y
6
4
2
  0
 d 
where X 
and Y 
s
s
YX
0
1
2
3
Input X
4
0
5
e 0 d
6
d
5
4
Gain
Gain
0
7
 (d ) Y

 (0) X
6
s
3
2
0.001
0.01
Input
0.1
0
1
s
23
10
Saturable Absorbers
Output Y  (d )
Transmittance =
 
Input
X  (0)
where  ( )  0 (i.e., attenuation)
0
0.8
d
0.6
Transmittance Y X
0.7
0.5
0.4
0.3
e 0 d
0.2
0.001
0.01
0.1
Input X
1
0
s
10
24
Gain Coefficient
Gain Coefficient
Inhomogeneously Broadened Medium
  
 s

0

0
1
25