Transcript ppt - KIAA

Kazuya Nishiyama
Kyoto University
Collaborator: Toshitaka Tatsumi, Shintaro Karasawa, Ryo Yoshiike
Quarks and Compact Stars 2014
October 2014, PKU, Beijing
T
ΞΌ
Usually, The QCD phase structure is studied by assuming that the order
parameter is temporally and spatially constant.
Is it possible that Non-uniform phase appears in QCD phase diagram?
β€’ Inhomogeneous phase appears in QCD
・Order parameter
Ξ”(𝑧) = πœ“πœ“ + 𝑖 πœ“π‘–π›Ύ 5 𝜏 3 πœ“
β– Typical configurations.
・Dual Chiral Density Wave(DCDW)
Phase is inhomogeneous
Ξ”DCDW 𝑧 = π‘š eπ‘–π‘žπ‘§
E.Nakano, T.Tatsumi (2005)
D.Nickel (2009)
G.Basar(2008)
…….
・Phase Diagram
Restored
RKC
・Real kink Crystal(RKC)
Amplitude is inhomogeneous
2π‘š 𝜈
2π‘šπ‘§
βˆ†RKC 𝑧 =
sn
;𝜈
1+ 𝜈
1+ 𝜈
Inhomogeneous phase appears
in intermediate ΞΌ
β€’ Quarks and Hadrons in Strong magnetic field
β€’ Magnetar ~1015 Gauss
β€’ Heavy Ion Collision ~1017 Gauss
β€’ Early Universe Much higher
β€’ Magnetic field causes various phenomena
β€’
β€’
β€’
β€’
et. al.(1994)
Magnetic Catalysis, Magnetic Inhibition V.P.Gusynin,
G.S.Bali, et, al. (2011)
K.Fukushima, et. al (2008)
Chiral magnetic effect
Charged vector meson condensation
….
QCD phase structure must be changed
by taking account to both of Inhomogeneity and magnetic field.
β€’ DCDW in the external magnetic field
I. E. Frolov,et.al. Rev. D 82, 076002 (2010)
Ξ”DCDW 𝑧 = π‘š eπ‘–π‘žπ‘§
ΞΌ=0.3
q/2
A: Restored phase
B,C,D: DCDW phase
β†’DCDW grows by magnetic field
However, RKC is more favorable than DCDW without magnetic field
β€’ Purpose of the current study
β€’ What inhomogeneous phase is favored in magnetic field
β€’ How mechanism of growth of DCDW in magnetic field
β€’ Model
Mean field NJL model in the external magnetic field.
𝐿 = πœ“π‘–π·πœ‡ 𝛾 πœ‡ πœ“ + 2𝐺 πœ“πœ“ πœ“πœ“ + πœ“π‘–π›Ύ 5 𝜏 π‘Ž πœ“ πœ“π‘–π›Ύ5 𝜏 π‘Ž πœ“
βˆ’ 𝐺[ πœ“πœ“
2
Ξ”(𝑧) = βˆ’2𝐺[ πœ“πœ“ + 𝑖 πœ“π‘–π›Ύ 5 𝜏 3 πœ“ ]
We assume that magnetic field is parallel to modulation of order parameters.
β€’ Hybrid Configuration
More general type condensate which includes DCDW and RKC
Ξ” 𝑧 ≔ M 𝑧 𝑒 π‘–π‘žπ‘§ =
2π‘š 𝜈
2π‘šπ‘§
sn
; 𝜈 × π‘’ π‘–π‘žπ‘§
1+ 𝜈
1+ 𝜈
DCDW
RKC
𝜈 β†’1
Ξ”DCDW (𝑧)
Ξ” 𝑧
This configuration is characterized by q,Ξ½,m
2
+ πœ“π‘–π›Ύ 5 𝜏 π‘Ž πœ“ ]
q→0
βˆ†RKC 𝑧
β€’ 1 particle Energy Spectrum
E𝑛,𝜁,𝛼 = 𝐹𝛼 + 𝜁
E𝑛=0,𝛼
π‘ž
2
π‘ž
= 𝐹𝛼 +
2
2𝑛 π‘žπ‘“ 𝐡
π‘ž
𝐹𝛼 + 𝜁 2
1+
2
n=1,2,…..
𝜁 = ±1
n:Landau levels (n=0,1,2…)
𝐹𝛼 :1+1dim RKC Energy spectrum
n=0
n=0, Energy spectrum is asymmetric.
β€’ Free energy
Ξ”(𝑧)
Ξ©=
4𝐺
2
1
βˆ’ 𝑁𝑐
𝛽
𝑓
π‘žπ‘“ 𝐡
2πœ‹
∞
𝑑𝐹 𝜌 𝐹 ln 1 + 𝑒 βˆ’π›½
Eπ‘›πœ–πœ (𝛼)βˆ’πœ‡
𝜁 𝑛=0
πœ•Ξ©
Phase structure is determined by Stationary conditions πœ•π‘š
= πœ•Ξ©
= πœ•Ξ©
=0
πœ•πœˆ
πœ•π‘ž
T.Tatsumi, K.N, S.Karasawa arXiv:1405.2155
β€’ Quark Density at T=0
πœ•Ξ©
βˆ’
= 𝑁𝑐
πœ•πœ‡
𝑓
π‘žπ‘“ 𝐡
2πœ‹
∞
𝑑𝐹 𝜌 𝐹 πœƒ(Eπ‘›πœπΉ )πœƒ(πœ‡ βˆ’ Eπ‘›πœπΉ )
𝜁 𝑛=0
+𝑁𝑐
𝑓
1 π‘žπ‘“ 𝐡
2 2πœ‹
E
sgn(E𝑛=0,𝐹 )
𝐹
Anomalous Quark Number Density
by Spectral Asymmetry
ΞΌ
q/2+m
A.J.Niemi (1985)
For DCDW (m>q/2)
πœŒπ‘Žπ‘›π‘œπ‘š = 𝑁𝑐
𝑓
1 π‘žπ‘“ 𝐡 π‘ž
2 2πœ‹ πœ‹
0
q/2-m
Ξ©π‘Žπ‘›π‘œπ‘š ∝ π‘’π΅π‘žπœ‡
This term is first order of q
β†’q=0 is not minimum point
β†’Inhomogeneous phase is more favorable than homogeneous broken phase.
β€’ Phase Diagram at T=0
A: Weak DCDW phase
B: Hybrid
C: Strong DCDW phase
D Restored
𝑒𝐡[MeV]
C
A
B
D
πœ‡[MeV]
B=0, the order parameter is real. Homogeneous phase and RKC phase appear.
Weak B, the order parameter is complex but q is small
Strong B, DCDW is favored everywhere.
(a) 𝐡 = 0
(b) 𝑒𝐡 = 70MeV (~5×1016 Gauss)
β–  βˆ†2
β– k
β–  q/2
Homo.
Broken
RKC
1/2
β–  βˆ†2
β– k
β– q/2
DCDW
Restored
1/2
DCDW
Restored
πœ‡[MeV]
πœ‡[MeV]
k is wavenumber of amplitude modulation
π‘˜ = 2 1 + 𝜈 K(𝜈)/π‘š
(b) 𝑒𝐡 = 120MeV (~1.4×1017 Gauss)
β–  βˆ†2
β– k
β–  q/2
(c)
DCDW
(b)
(a)
DCDW
πœ‡[MeV]
1/2
β€’ Summary
β€’ Hybrid type configuration is used
Ξ” 𝑧 ≔ M 𝑧 𝑒 π‘–π‘žπ‘§ =
2π‘š 𝜈
2π‘šπ‘§
sn
; 𝜈 × π‘’ π‘–π‘žπ‘§
1+ 𝜈
1+ 𝜈
β€’ In magnetic field, DCDW is favored due to Spectral asymmetry
β€’ Magnetic field causes inhomogeneity of phase
β€’ Hybrid phase appears in the magnetic field
β€’ Broken Phase expands by magnetic field
β€’ Outlook
‒ Phase diagram at T≠0
β€’ Strangeness
β€’ Isospin chemical potential
・B=0 case
Hamiltonian has Ξ” β†’ βˆ†βˆ— symmetry
Ω𝐺𝐿 = 𝛼0 + 𝛼2 Ξ” 2 + 𝛼4 Ξ” 4 + Ξ”β€² 2
+𝛼6 Ξ” 6 + 4 Ξ” 2 Ξ”β€² 2 + Im Ξ”β€²Ξ”βˆ—
𝛼2 = 𝛼4 = 0 is Lifshitz point
2
+ 12 Ξ”β€²β€²
2
・Bβ‰ 0 case
Ξ” β†’ βˆ†βˆ— symmetry is broken.
β†’Odd order term appears
βˆ—
Ω𝐺𝐿 = 𝛼0 + 𝛼2 Ξ” 2 + 𝛼3 Im ΔΔ′ + 𝛼4 Ξ” 4 + Ξ”β€²
+𝛼5 Im
Ξ”β€²β€² βˆ’ 3 Ξ” 2 Ξ” Ξ”β€²
+𝛼6 Ξ” 6 + 4 Ξ”
2
B=0 or ΞΌ=0 β†’Odd term vanishes
New Lifshitz point appears at 𝛼2 = 𝛼3 = 0
Ξ”β€²
2
βˆ—
2
+ Im Ξ”β€²Ξ”βˆ—
2
+ 12 Ξ”β€²β€²
2
𝐡=0
Ξ”
2 1/2
πΏβˆ’1
π‘ž =0 everywhere
L: period of amplitude modulation
𝑒𝐡 = 80MeV
Ξ”2
1/2
πΏβˆ’1
β€’ Broken phase expands by magnetic field
β€’ Phase modulation grows near the β€œCritical Point”
π‘ž
Quark Gluon Plasma
Hadron
Liquid-Gas
transition
Color
Superconductor