PPT - Math For College
Download
Report
Transcript PPT - Math For College
Finite Difference Method
Civil Engineering Majors
Authors: Autar Kaw, Charlie Barker
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
4/9/2015
http://numericalmethods.eng.usf.edu
1
Finite Difference Method
http://numericalmethods.eng.usf.edu
Finite Difference Method
An example of a boundary value ordinary differential equation is
d 2u 1 du u
0, u (5) 0.008731" , u (8) 0.0030769"
dr2 r dr r 2
The derivatives in such ordinary differential equation are substituted by finite
divided differences approximations, such as
dy yi 1 yi
dx
x
d 2 y yi 1 2 yi yi 1
2
dx
x2
3
http://numericalmethods.eng.usf.edu
Example
Take the case of a pressure vessel that is being tested in the laboratory to
check its ability to withstand pressure. For a thick pressure vessel of inner
radius a and outer radius b, the differential equation for the radial
displacement u of a point along the thickness is given by
d 2 u 1 du u
2 0
2
r dr r
dr
The pressure vessel can be modeled as,
d 2u
dr2
du
dr
ui 1 2ui ui 1
r 2
ui 1 ui
r
Substituting these approximations gives you,
ui 1 2ui ui 1 1 ui 1 ui ui
2 0
ri r
r 2
ri
1
1
2
1
1
1
u
u
2
i 1 r 2 r r r 2 i r 2 ui 1 0
r
r
r
i
i
i
4
http://numericalmethods.eng.usf.edu
Solution
Step 1 At node i 0,
Step 2 At node i 1,
"
r0 a 5" u0 0.0038731
r1 r0 r 5 0.6 5.6"
1
2
1
1
1
u
u
2 0
2
2 1
0.6 2 5.60.6 u 2 0
5
.
6
0
.
6
0.6
5.6
0.6
1
2.7778u0 5.8851u1 3.0754u2 0
Step 3 At node i 2, r2 r1 r 5.6 0.6 6.2"
1
1
2
1
1
1
u3 0
u
u
1
2
2
2
2
2
6.20.6 6.2 0.6 6.20.6
0.6
0.6
2.7778u1 5.8504u 2 3.0466u3 0
5
http://numericalmethods.eng.usf.edu
Solution Cont
Step 4 At node i 3, r3 r2 r 6.2 0.6 6.8"
2
1
1
1
1
1
u
u
2
0.62 6.80.6 6.82 3 0.62 6.80.6 u4 0
0.62
2.7778u2 5.8223u3 3.0229u4 0
Step 5 At node i 4, r4 r3 r 6.8 0.6 7.4"
2
1
1
1
1
1
u
u
3
4
0.62 7.40.6 u5 0
0.62 7.40.6 7.42
0.62
2.7778u3 5.7990u4 3.0030u5 0
Step 6 At node i 5, r5 r4 r 7.4 0.6 8
u5 u |r b 0.0030769
"
6
http://numericalmethods.eng.usf.edu
Solving system of equations
0
0
0
0
0 u0 0.0038731
1
2.7778 5.8851 3.0754
u
0
0
0
0
1
0
2.7778 5.8504 3.0466
0
0 u2
0
u
0
0
2
.
7778
5
.
8223
3
.
0229
0
0
3
0
0
0
2.7778 5.7990 3.0030 u4
0
0
0
0
0
1 u5 0.0030769
0
u0 0.0038731
u3 0.0032743
u1 0.0036165
u4 0.0031618
u2 0.0034222
7
u5 0.0030769
http://numericalmethods.eng.usf.edu
Solution Cont
du
dr
r a
u1 u0 0.0036165 0.0038731
r
0.6
0.00042767
30106 0.0038731
max
0
.
3
0
.
00042767
21307psi
2
1 0.3
5
36 103
FS
1.6896
21307
Et 20538 21307 768 .59
t
8
20538 21307
100 3.744%
20538
http://numericalmethods.eng.usf.edu
Solution Cont
Using the approximation of
d 2 y yi 1 2 yi yi 1
dx2
x2
and
dy yi 1 yi 1
dx
2x
Gives you
ui 1 2ui ui 1
r 2
1
1
2r r r 2
i
9
1 ui 1 ui 1 ui
2 0
ri 2r
ri
1
2
1
1
u i 1
u
r 2 r 2 i r 2 2r r u i 1 0
i
i
http://numericalmethods.eng.usf.edu
Solution Cont
Step 1 At node i 0, r0 a 5
u0 0.0038731
Step 2 At node i 1, r1 r0 r 5 0.6 5.6"
1
1
1
2
1
1
u
u
25.60.6 0.62 0 0.62 5.62 1 0.6 2 25.60.6 u 2 0
2.6297u0 5.5874u1 2.9266u2 0
Step 3 At node i 2, r2 r1 r 5.6 0.6 6.2
1
1
1
2
1
1
u3 0
u
u
2 1
2
2 2
2
26.20.6
6.2
0.6
26.20.6 0.6
0.6
2.6434u1 5.5816u 2 2.9122u3 0
10
http://numericalmethods.eng.usf.edu
Solution Cont
Step 4 At node i 3, r3 r2 r 6.2 0.6 6.8
1
1
1
2
1
1
u
u
3
2 2
2
2
0.6 2 26.80.6 u 4 0
2
6
.
8
0
.
6
0
.
6
0
.
6
6
.
8
2.6552u2 5.5772u3 2.9003u4 0
Step 5 At node i 4, r4 r3 r 6.8 0.6 7.4
1
1
1
2
1
1
u5 0
u
u
2 3
2
2 4
2
2
7
.
4
0
.
6
2
7
.
4
0
.
6
0.6
7.4 0.6
0.6
2.6651u3 5.5738u4 2.8903u5 0
Step 6 At node i 5, r5 r4 r 7.4 0.6 8"
u5 u |r b 0.0030769"
11
http://numericalmethods.eng.usf.edu
Solving system of equations
0
0
0
0
0 u0 0.0038731
1
2.6297 5.5874 2.9266
u
0
0
0
0
1
0
2.6434 5.5816 2.9122
0
0 u2
0
0
2.6552 5.5772 2.9003
0 u3
0
0
0
0
0
2.6651 5.5738 2.8903 u4
0
0
0
0
0
1 u5 0.0030769
0
u0 0.0038731
u3 0.0032689
u1 0.0036115
u4 0.0031586
u2 0.0034159
12
u5 0.0030769
http://numericalmethods.eng.usf.edu
Solution Cont
du
dr
r a
3u0 4u0 u2 3 0.0038731 4 0.0036115 0.0034159
0.0004925
2r
2(0.6)
30106 0.0038731
max
0
.
3
0
.
0004925
20666psi
2
1 0.3
5
36 103
FS
1.7420
20666
Et 20538 20666 128
t
13
20538 20666
100 0.62323%
20538
http://numericalmethods.eng.usf.edu
Comparison of radial
displacements
Table 1 Comparisons of radial displacements from two methods
14
r
uexact
u1st order
|єt|
u2nd order
|єt|
5
0.0038731
0.0038731
0.0000
0.0038731
0.0000
5.6
0.0036110
0.0036165
1.5160×10−1
0.0036115
1.4540×10−2
6.2
0.0034152
0.0034222
2.0260×10−1
0.0034159
1.8765×10−2
6.8
0.0032683
0.0032743
1.8157×10−1
0.0032689
1.6334×10−2
7.4
0.0031583
0.0031618
1.0903×10−1
0.0031586
9.5665×10−3
8
0.0030769
0.0030769
0.0000
0.0030769
0.0000
http://numericalmethods.eng.usf.edu
Additional Resources
For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit
http://numericalmethods.eng.usf.edu/topics/finite_differ
ence_method.html
THE END
http://numericalmethods.eng.usf.edu