Exchange Protein Directly Activated by cAMP

Download Report

Transcript Exchange Protein Directly Activated by cAMP

Exchange Protein Directly Activated
By cAMP (EPAC1) Modulates TregMediated Immune Suppression
Xiaodong Cheng
Department of Integrative Biology &
Pharmacology, University of Texas Health
Science Center @ Houston
FreshAir, October 23, 2014
cAMP signaling pathways
GPCR
Gβγ
GSα
G protein
cAMP
ATP AC cAMP
cAMP
Rap1
EPAC
PKA
GSα
cAMP and major discoveries
2012
Robert Lefkowitz
Brian Kobilka
cAMP and therapeutics
• One of the most targeted signaling
pathways for therapeutic intervention
• Almost all related drugs targeting
GPCRs or PDEs.
• PKA based drug discovery has not been
successful
EPAC & PKA: major cAMP sensors
(Exchange Protein directly Activated by cAMP)
EPAC1
EPAC2
PKA
A
CBD
DEP
B
CBD
A
B
R subunit
Regulatory region
REM
RA
CDC25HD
C subunit
Catalytic region
EPAC & PKA: a tale of two receptors
EPAC & PKA exhibit distinct cellular
localizations
& may act antagonistically
Epac
or synergistically in mediating a specific
PKA
cAMP cellular function.
Gaps and unmet needs
• Physiological functions of EPAC
proteins
• Disease relevance of EPAC proteins
• Lack of isoform-specific EPAC
modulators
EPAC1 and energy homeostasis
Yan, et al. Mol. Cell. Biol. 2013.
Identification of EPAC-specific inhibitors
Tsalkova, et al. PNAS. 2012.
EPAC1 KO protects mice from
fatal rickettsioses
Gong, et al. PNAS. 2013.
ESI-09 exerts excellent bioavailablity
E S I- 0 9 C o n c e n t r a t io n ( u M )
180
160
140
120
100
80
60
40
20
0
0
5
10
15
T im e ( h o u r )
20
ESI-09 protects mice from
fatal rickettsioses
EPACs and human diseases
• Diabetes
Zhang CL, et al. Science 325:607, 2009.
Song WL, et al. Diabetes. 62:2796, 2013.
• Obesity
Fukuda M, et al. Cell Metab. 3:331, 2011.
Yan J, et al. Mol Cell Biol. 33:918, 2013.
• Cancer
Almahariq M, et al. Mol Pharmacol. 83:122, 2013.
Onodera Y, et al. J Clin Inv. 124: 367, 2014.
• Cardiovascular Diseases
Okumura S, et al. J Clin Inv. 124: 2785, 2014.
Pereira L, et al. Circulation 127:913, 2013.
• Chronic Pain
Ferrari LF, et al. Neuroscience 222:392, 2012.
Wang H, et al. J Clin Inv. 123: 5023, 2013.
cAMP and regulatory T cells
• cAMP is a potent inhibitor of T cell functions
• Role of EPAC protein in Treg is not clear
AC
miR142-3p
GJ
Foxp3
IL-2 expression
IL-4 expression
Proliferation
cAMP
PDE
Treg
Teff
EPAC1 inhibition attenuates Treg functions
140
% Teff Proliferation
120
*
100
*
80
60
40
20
0
WT
Teff
WT
Teff
+
ESI-09
KO
Teff
WT
Teff
WT
Teff
KO
Teff
KO
Teff
WT
Teff
+
+
+
+
+
WT
Treg
KO
Treg
WT
Treg
KO
Treg
WT
Treg
+
ESI-09
EPAC1 inhibition boosts the immune response
OVA Immunized
Naïve
6
*
4
*
3
2
1
Total IgG (OD) x 105
OVA-IgG (OD) x 102
5
*
5
4
3
2
1
0
0
WT
Epac1-/- WT/ESI-09
WT
Epac1-/-
Tregs suppress Teff by direct cAMP transfer
Tregs
Teff
GJ
cAMP
IL-2 expression
IL-4 expression
Proliferation
?
EPAC1
Bodor J, et al. Eur J Immunol 2012
EPAC1 does not alter T cell gap junctions
Treg
Teff
Treg + Teff
10
0%
4.5%
8
Vehicle
WT
0%
0%
4.6%
% Dye Transfer
Calcein red orange AM
0%
Vehicle
ESI-09
6
4
2
+ ESI-09
0
WT Treg
+
WT Teff
0%
0%
5.9%
Vehicle
EPAC1-/-
0%
0%
CFSE
6.0%
+ ESI-09
-/-
Epac1 Treg
+
- /Epac1 Teff
EPAC1 regulates STAT3 activation
Teff
Epac1-/-
WT
(hrs) 0
2 24 48
Treg
72
0
Epac1-/-
WT
2 24 48
72
0
2
24
0
2
24
p-STAT3
STAT3
% Phosphorylation
35
*
30
WT
Epac1
*
25
-/-
20
*
15
*
10
*
5
0
0
2
24
48
72
Teff
0
2
Treg
Hrs Post Stimulation
24
EPAC1 regulates Treg activity through STAT3
Vehicle
60
StatticV
% Proliferation of Teff
50
40
*
30
*
20
*
10
0
WT Teff
+
-
+
Epac1-/- Teff
-
+
-
WT Treg
+
-
+
Epac1-/- Treg
-
+
-
ESI-09 (5 µM)
-
-
+
Inhibition of EPAC1 desensitizes T-cells to TGF-β1
A
700
Vehicle
TGF-β1
IL-2 (ng/mL)
600
500
C
400
300
*#
200
WT
WT/ESI-09
Smad7
*#
Actin
*
100
0
WT
WT/ESI-09 Epac1-/-
B
+ TGF-β1
Vehicle
WT
P-Smad2
Smad2
WT/ESI-09
EPAC1-/-
WT
WT/ESI-09
Epac1-/-
Epac1-/-
EPAC1 as a
therapeutic target in
PDA
Inhibition in PDA
Inhibition in host
Enhance
host immune
response
Enhances
tumor
immunity
Inhibit
metastasis
Tumor
regression?
Conclusion
• EPAC proteins are important signaling
molecules and drug targets
• First-in-class small molecule EPAC
pharmacological probes as therapeutic leads
• Inhibition of EPAC1 reduces Treg potency
and Teff sensitivity to suppression through
the STAT3/TGF-β1 pathway
Acknowledgements
Lab members:
Collaborators:
Muayad Almahariq
Yaohua Hu
Fang Mei
Tamara Tsalkova
Jingbo Yan
Hui Wang
Yingmin Zhu
Ju Chen (UCSD)
Mark White (UTMB)
Jia Zhou (UTMB)
Bin Gong/David Walker (UTMB)
Massoud Motamedi (UTMB)
Jin Zhang (John Hopkins)
Don Blumenthal (Utah)
George Holz (SUNY Upstate)
Funding: ACS, AHA, GCC & NIH
EPAC1 and TGF-β1 signaling
TCR
α
CD4
β
CD3
CD3
ε δ
ε δ
TGF-β1
AC
GPC
Gs R
LCK
ζ ζ
ATP
TβR-I
P
cAMP
TβR-II
EPAC1
P
P
STAT3
STAT3
SMAD 2
SMAD 4
P
P
P
STAT3
STAT3
SMAD 2
SMAD 4
P
SMAD 7
Mechanism of EPAC activation