Transcript Gornyi_3
Non-equilibrium physics
in one dimension
Igor Gornyi
Karlsruhe Institute of Technology
Москва
Сентябрь 2012
Part II
Nonequilibrium Bosonization
developed by D.Gutman, Y.Gefen, A. Mirlin ’09-10
• Strongly correlated state (LL) out of equilibrium – ?
• No energy relaxation in LL (in the absence of
inhomogeneities, neglecting non-linearity of spectrum
and momentum dependence of interaction)
• Equilibrium: exact solution via bosonization.
Non-equilibrium – ? Fermionic distribution within the
bosonization formalism – ?
Bosonization
Functional bosonization
Hubbard-Stratonovich transformation decouples quartic interaction term
1D: gauge transformation
with
eliminates coupling between fermions and HS-bosons
Averaging over fluctuating bosonic fields
Tunneling conductance:
When the DOS in the tunneling probe is constant, only
enters
Otherwise, the first term contributes
information on the distribution function inside the wire encoded in
Superconducting tip measurement of both TDOS and distribution function
•
•
•
•
mapping between the Hilbert space of fermions and
bosons;
construction of the bosonic Hamiltonian representing the
original fermionic Hamiltonian in terms of bosonic
(particle-hole) excitations, i.e. density fields;
expressing fermionic operators in the bosonic language;
calculation of observables (Green functions) within the
bosonized formalism by averaging with respect to the
many body bosonic density matrix
Non-interacting electrons:
Derivation of non-equilibrium bosonized action
Keldysh action:
Source term:
classical and quantum fields
(Dzyaloshinskii-Larkin Theorem)
Generating functional as a determinant
Single-particle Hamiltonians:
Free electrons:
Bosonization identity
S is linear in classical component of the density
•
Disordered Nanowire
White-noise disorder:
U
(
x
)(
U
x
)
(
x
x
)
/
(
2
v
)
*
b 1 b2
– elastic scattering time
1 2
F
Backscattering amplitude !
• Drude conductivity at high T:
D e2vF2
2
• Renormalization of disorder: 11 Giamarchi
0
T
l
L
, G G
Q
& Schulz
“Functional” bosonization
We use the Hubbard-Stratonovich decoupling scheme
*
1
ˆ
ˆ
(
i
)
i
v
U
U
G
(
x
,
x
'
,
t
,
t
'
,
[
]
)
1
t
z F
x
b
b
2
Equation of motion for an electron in the fluctuating electric field
• Green‘s function
1
GD
(
x
,
t
)
G
(
x
,
t
,
[
]
)
e
x
p
[
i
S
[
]
i
V
e
f
f
0]
• Effective action
φ(x,t)
Seff =
+
RPA-terms
Non-RPA
g0
+
g0
Single impurity: Grishin, Yurkevich & Lerner
+ …
Kinetic theory of disordered LL
D.Bagrets, I.G., D.Polyakov ‘09
• Functional bosonization scheme
• Semiclassical Keldysh Green‘s function at x=x‘
g
(
x
,
t
,
t
)
i
v
G
(
x
,
x
0
,
t
,
t
)
G
(
x
,
x
0
,
t
,
t
)
1
2
F
1
2
1
2
We use the ideas of the nonequilibrium superconductivity
g g 1ˆ
• Eilenberger equation ( exact for linear spectrum in 1D ! )
Equation of motion for electron in the fluctuating electic field
• Born approximation over impurity scattering
( incoherent limit at T>>T1 )
• Dissipative Keldysh action ( 1D ballistic σ-model )
• Quantum kinetic equations for electrons and plasmons
Kinetic equation for electrons
1 R L
R
R
v
f
(
f
f
)
S
t
t R F x
e
2
e-e collision integral
g
R
2
L
“Poisson” equation
1
L
(
t
,
x
)
(
tx
,
)
d
f
(t,x
)
L
L
2
v
F
Charge density
cf. kinetic equations in plasma physics
• Motion of e- in the dissipative bosonic environment
S
t
(
)
d
I
(
)
f
(
1
f
)
I
(
)
f
(
1
f
)
e
v
Absorption
Full rate of emission
Emission rate (in one-loop)
RPA-like effective e-e interaction:
V (,q)
Plasmon :
qi
Particle-hole: q=
u
i
)/vF
Poles, if separated, are
close to each other.
ReD
,q)
R (
Plasmons exist at
only
2
id
q
,
I(
)
Vq
(
,)
R
e(
D
q
)
R
Large energy transfer,
We treat contributions from plasmons and e-h piars
separately !
Resonant process
(u is close to vF!)
Emission rate of plasmons:
I
()
L
()
(
1
n
)
p
,
1
v
v
F
F
L
(
)
1
,
L
(
)
1
,
2
3
2
2
2
u
2
u
Collision Kernel
Weak interaction limit, α=Vq/πvF<<1
Disorder-induced resonant
enhancement
of inelastic scattering
Electron distribution function
Hot-electrons with
T 3eU/4
D = L/vF - dwell time
Summary I
Summary II