澆口設計

Download Report

Transcript 澆口設計

模具設計的優先順序
Priorities of Mold Design
澆注系統設計 (Filling System Design)
排氣系統設計 (Venting System Design)
冷卻系統設計 (Cooling System Design)
脫模系統設計 (Ejecting System Design)
澆注系統設計的優先順序
Priorities of Filling System Design
產品設計 (Part Design)
型腔設計 (Cavity Design)
澆口設計 (Gate Design)
流道設計 (Runner Design)
噴嘴設計 (Nozzle Design)
典型的澆注系統
Typical Filling System
豎澆道
Sprue
澆口
成品
Gate
Part
主流道
Main Runner
冷料井
Cold Slug Well
支流道
Branch Runner
壁厚不均
Non-uniform Wall Thickness
壁厚不均是注塑成型中最大的麻煩製造者。 這對薄壁
產品尤然。 這些麻煩包括了遲滯現象、短射、凹陷、
發赤、噴流、翹曲及長冷卻時間等;目前都可用CAE
以直接或間接的方式預測。
Non-uniform wall thickness is the biggest trouble maker in
plastic injection molding. This is especially true to thinwall part. The troubles, including hesitation, short shot,
sink mark, blush, jetting, warpage and long cooling time
etc., can be predicted, directly or indirectly, by using CAE.
壁厚設計
Wall Thickness Design
差 [Poor]
較好 [Better]
最好 [Best]
掏空設計 (1)
Coring Out Design (1)
原設計 [Original]
改進設計 [Improved]
掏空設計 (2)
Coring Out Design (2)
差 [Poor]
改進 [Improved]
氣泡或/和凹陷的形成
Void or/and Sink Mark Forming
氣泡 ( Void )
凹陷 ( Sink Mark )
肋厚和內圓角半徑的影響
The Effect of Rib Thickness & Fillet Radius
肋的底部厚度
Bottom Thickness of Rib
(A)
(B)
1.5WD
1.2WD
2.5W
W
0.5W
W
肋的設計 (1 )
Rib Design ( 1 )
A
C
t
B
D
E
F
A
t = wall thichness
B = 0.5t
C=3t
D=2B
E = 0.13 mm(radius)
F = 1.5 - 2 deg
假如需要更大的強度,可增加肋的數目
If more strength is required, add additional ribs.
肋的設計 (2)
Rib Design ( 2 )
肋的設計 (3)
Rib Design ( 3 )
與側壁相連之凸轂 (熱塑性塑膠)
Boss at Wall ( Thermoplastics )
L
H
A'
A'
K
E
J D
I
F
A
C
B
Section A'-A'
G
A = 凸轂附著處壁厚
wall thickness
B = 凸轂外環直徑
dia. of boss over radii
C = 0.5 A
D =2B
E = 1 ~ 2 deg
F = 0.13 mm ( radius )
G =D
H = 0.8 A
I =A/4
J =2B
K = 0.3 ~ 1 J
L = 0.5 A
遠離側壁之凸轂 (熱塑性塑膠)
Boss Away From Wall ( Thermoplastics )
I
E
H
G
D
F
F
A
C
B
A =凸轂附著處壁厚
wall thickness
B =凸轂外環直徑
(含底部修整圓弧半徑)
dia. of boss over radii
C = 0.5 A
D=2B
E = 1 - 2 deg
F = 0.13 mm ( radius )
G = 0.95 D
H = 0.3 G min. to G max.
I = 0.5 A
外側凸轂
Outside Boss
A'
A ( DIA )
A'
B=A
B= 2A ( max. )
B
Section A'-A'
撓曲剛性
Flexural Rigidity
1
r

M
EI
Where
1/r : 樑的曲率
curvature of the beam
M : 彎曲力矩
bending moment
E : 彈性模數
modulus of elasticity
I
: 斷面積對中立軸的慣性矩
moment of inertia of the cross- sectional area
with respect to the neutral axis
EI : 撓曲剛性 flexural rigidity
各種一體成型的內鎖件
能增加薄殼的剛性。
A variety of
molded-in
interlocks can
add stiffness
to thin-wall
housing designs.
結構設計和薄殼成型產品
Structural Design & Thin-wall Molding Parts
結構設計是薄殼成型零件的基礎。
Structural design is the base of thin-wall molding
parts.
薄殼成型產品不僅僅是一趨勢,而且也是降低成本
和提高競爭力的有效途徑。
Thin-wall molding part is not only a trend but also
an effective way to achieve cost reduction and
competitiveness increase.
熔膠波前推進
Melt-Front Advancement
充填模式,積風和熔接線
Filling Patterns, Air-Traps and Weld Lines Location
熔接線
Weld Lines
更改澆口位置以重新定位熔接線
Weld Lines Can Be Relocated
By Changing Gate Location
原設計 [Original]
更改設計 [Revised]
材料 [Material] : PC-GF50
典型對頭熔接線伸張強度保留值
Typical Butt Weld Tensile Strength Retention Values
M a teria l
Ty p e
PP
PP
PP
SAN
SAN
PC
PC
PC
PSF
PSF
PPS
PPS
PPS
PA 6 6
PA 6 6
PA 6 6
R ein fo rce m en t Ten sile S tre n g th
Ty p e
R eten tio n (% )
0% GF
8 6%
2 0% G F
4 7%
3 0% G F
3 4%
0% GF
8 0%
3 0% G F
4 0%
0% GF
9 9%
1 0% G F
86%
3 0% G F
6 4%
0% GF
1 00 %
3 0% G F
6 2%
0% GF
8 3%
1 0% G F
3 8%
4 0% G F
2 0%
0% GF
8 3 -1 00 %
1 0% G F
8 7 -9 3 %
3 0% G F
5 6 -6 4 %
熔接線冷料井
Weld Slug Well
熔接線冷料井
[Weld slug well]
對頭熔接線 [Butt weld]
積風
Air Traps
排氣
Vent
A'
進料流道
Feed Runner
塑膠成品
Plastic Part
A
C
A'
大部份熱塑性塑膠
Most Thermoplastics
A 0.08 mm
B 3.18 mm
C 12.7 mm
D 0.25 mm
排氣孔
Vent
D
B
SEC. A'-A'
耐隆和聚縮醛 ( POM )
Nylon and Acetal ( POM )
A 0.04 mm
B 3.18 mm
C 12.7 mm
D 0.25 mm
澆口數目
The Number of Gates
每增加一個澆口,至少增加一條熔接線,同時增加一個澆口
痕跡、增加流道的體積以及增加較多的積風。
Every time one gate is added, one weld line, at least, one gate
mark, more runner volume and more air traps will be added.
在型腔能夠完滿充填的前提下,澆口數目是愈少愈好。
As long as the cavity is able to be filled appropriately, gates are
the less the better.
為了減少澆口數目,每一澆口應就塑流力所能及的流長/壁厚
比之內,找出可以涵蓋最大產品面積的進澆位置。
In order to reduce the number of gates, each gate shall be located
at where the melt is able to cover maximum part area based on
the largest melt flow length/thickness ratio.
充填均衡
Flow Balance
熔膠波前於同一時間抵達型腔各末端。
Melt front reaches the ends of cavity at the
same time.
洗衣機圈板
洗衣機圈板
冷氣通風飾罩-原始設計
Air-conditioner Grille - Original
18 gates
pressure: 76 MPa
冷氣通風飾罩-修正設計
Air-conditioner Grille - Revised
8 gates
pressure: 75 MPa
分析結果比較表
Comparison of Analysis Results
十二澆口設計
12 Gate Design
電子零件置物箱
材料 Material:ABS
原始設計
Original Design
四澆口設計
4 Gate Design
電子零件置物箱
材料 Material:ABS
修正設計
Revised Design
電子零件置物箱四澆口
和十二澆口設計比較表
原始設計
修正設計
12
4
2
2
最 大 射 壓 (M P a)
5 8 .4
6 1 .8
鎖 模 力 需 求 (To n )
950
820
4136
4136
294
98
澆口數目
充 填 時 間 (s)
產 品 重 量 (g)
流 道 系 統 重 量 (g)
如何快速平衡眾多模穴之流道
How to Balance Flow In A
Multi-cavity Mold
• 首先調整一排支流道內之次支流道尺寸,使此支流道內
之各模穴可平衡充填。
First, adjust runner size in one branch to make flow
balanced in this branch.
• 再調整各支流道前段之尺寸,使各支流道可平衡充填。
Then, adjust the first section’s runner size in each branch
to make flow balanced in all branches.
一排支流道之不平衡充填
Unbalanced Flow In A Branch
一排支流道平衡後之充填
Balanced Flow In A Branch
全模具(128模穴)之不平衡充填
Unbalanced Flow In A Mold
全模具(128模穴)平衡後之充填
Balanced Flow In A Mold
The melt fills the inside cavities
before filling the outside cavities.
The runner system
shows that warmer,
low-viscosity material
(yellow and red)
follows the inside
wall when the melt
splits at an
intersection.
Melt ” Flipper ”
導致平直產品的澆口設計
Gate Design for Flat Part
最壞的
Worst
中心澆口
Center Gate
較好的
Better
扇形澆口
Fan Gate
壞的
Worse
側澆口
Edge Gate
最好的
Best
薄模澆口
Film Gate
澆口設計(減少滯流效應)
Gate Design to Avoid Hesitation
厚
thick
厚
thick
澆口
gate
薄
thin
薄
thin
差的設計
Poor
好的設計
Good
澆口
gate
幫浦零件 (Part, Pump)
塑料 (Polymer) : POM
0.94秒時,遲滯現象在
1.2 mm厚凸片處發生
公稱厚度 3.2 mm
幫浦零件 (Part, Pump)
塑料 (Polymer): POM
沒有遲滯現象
澆口設計(避免凹陷和氣泡)
Gate Design to Avoid Sink Mark & Void
澆口
gate
差的
Poor
澆口
gate
好的
Good
使用重疊澆口以避免噴流
Avoid Jetting by Using Overlap Gate
差的
Poor
好的
Good
正確的澆口位置以避免噴流
Avoid Jetting by Locating Gate Correctly
差的
Poor
好的
Good
使用凸片澆口以避免噴流
Avoid Jetting by Using Tab Gate
使用適當的澆口形狀以避免噴流
Avoid Jetting by Profiling Gate Properly
差的
Poor
好的
Good
幫浦零件(Part, Pump)
塑料(Polymer): POM
進澆處(Polymer entrance):
澆口厚(Gate thickness)
1.2mm,模穴厚(Cavity
thickness) 3.2mm
問題 (Problem):
噴流(Jetting)
Poor Design Causing Jetting
Gas Pin
Gate
Part
: Handle, Refrigerator
Material : ABS
Problem : Jetting Mark
氣輔成型冰箱把手
澆口及氣針入口
澆口太小,導致噴流痕產生
厚度差異過大,導致二次噴流痕產生
R角過小,氣體通路接近把手內側,外側則
因體積收縮造成凹陷痕跡
閥澆口
Valve Gate
1. 閥澆口梢
Valve-Gate Pin
2. 加熱管
Heater
3. O型環
#610 "0" Ring
4. 流道歧管模板
Manifold Plate
5. 軸封環
Seal Retainer
6. 套筒軸封
Sleeve Seal
7. 枕塊
Support Pillar
8. 油壓缸
Hydraulic Cylinder
閥澆口 (1)
Valve Gate ( 1 )
全部閥澆口同時打開時之充填狀況
Mold filling with all the valve gates ( shut-off gates ) opened at the same time.
閥澆口 (2)
Valve Gate ( 2 )
部份閥澆口延遲打開,改變充填模式
Mold filling with delayed valve gate opening;
filling pattern, weld lines and air traps are changed.
多澆口設計
Multi-Gate Design
閥式澆口
Valve Gate
澆口種類
Gate Types
針點澆口
Pin Gate
凸片澆口
Tab Gate
扇型澆口
Fan Gate
潛伏澆口
Submarine Gate
閥澆口
Valve Gate
邊緣(薄膜)澆口
Edge ( Film ) Gate
環狀澆口
Ring Gate
矩形邊緣澆口設計
Rectangular Edge Gate Design
L = 0.5 ~ 0.75 mm
W 
W
t
h
L
n A
h=nt
30
W = 澆口寬度 ( mm )
gate width in mm
A = 型腔表面積 ( mm2 )
surface area of cavity in mm2
n = 材料常數 material constant
0.6 for PE, PS
0.7 for POM, PC, PP
0.8 for CA, PMMA, PA
0.9 for PVC
h = 澆口厚度( gate thick. in mm )
t = 零件壁厚( wall thick. in mm )
扇形澆口設計
Fan Gate Design
L= 1.3mm
W=
n 
30
w= 澆口寬度 [mm]
gate width in mm
A= 型腔表面積 [ mm2 ]
surface area of cavity in mm2
n= 材料常數[ material constant ]
0.6 for PE, PS
0.7 for POM, PC, PP
0.8 for CA, PMMA, PA
0.9 for PVC
澆口厚度[ gate thick. in mm]
h1 = n t h2 = wh1/D
t= 零件壁厚[ wall thick. in mm ]
重疊式澆口設計
Overlap Gate Design
W= n 
30
w= 澆口寬度 [mm]
gate width in mm
A= 型腔表面積 [ mm2 ]
surface area of cavity in mm2
n= 材料常數[ material constant ]
0.6 for PE, PS
0.7 for POM, PC, PP
0.8 for CA, PMMA, PA
0.9 for PVC
澆口厚度[ gate thick. in mm] = nt
澆口長度[ land length in mm ]
L1 = 0.5~0.75 L2 = h+( w/2 )
t= 零件壁厚[ wall thick. in mm ]
凸耳澆口設計
Tab Gate Design
L= 0.5~0.75mm
W=
n 
30
w= 澆口寬度 [mm]
gate width in mm
A= 型腔表面積 [ mm2 ]
surface area of cavity in mm2
n= 材料常數[ material constant ]
0.6 for PE, PS
0.7 for POM, PC, PP
0.8 for CA, PMMA, PA
0.9 for PVC
澆口厚度[ gate thick. in mm]
h1 = n t h2 = 0.9 t
t= 零件壁厚[ wall thick. in mm ]
針點澆口設計
Pin Gate Design
d  0 .2 0 6 n
L
t
d
t 
4
A
L = 0.5 ~ 0.75 mm
d = 澆口直徑( mm )
gate diameter in mm
t = 零件壁厚( mm )
wall thick. in mm
A = 型腔表面積 ( mm2 )
surface area of cavity in mm2
n = 材料常數
material constant
0.6 for PE, PS
0.7 for POM, PC, PP
0.8 for CA, PMMA, PA
0.9 for PVC
潛伏式澆口設計
Subgate Design
W=
15º ~ 25º
30 ~
n 
30
w= 澆口寬度 [mm]
gate width in mm
A= 型腔表面積 [ mm2 ]
surface area of cavity in mm2
n= 材料常數[ material constant ]
0.6 for PE, PS
0.7 for POM, PC, PP
0.8 for CA, PMMA, PA
0.9 for PVC
澆口厚度[ gate thick. in mm] = nt
t= 零件壁厚[ wall thick. in mm ]
剪切速率
Shear Rate
剪切應力
Shear Stress
剪 切 應 力
shear Stress
黏 度
viscosity
剪 切 速 率
shear rate
水力直徑
Hydraulic Diameter
DH
Where

4A
P
DH
is the hydraulic diameter 水力直徑
A
is the cross-sectional area of the flow
流路斷面積
P
is the wetted perimeter 濕周長
水力直徑
Hydraulic Diameter
在不同剖面形狀,相同斷面積下之變化
Various runner profiles, based on the same cross-sectional area
流道尺寸設計 (1)
Runner Sizing (1)
D
W 
4
L
3.7
D : 流道直徑 ( mm )
runner diameter in mm
W : 下游塑膠重量 ( g )
downstream plastic weight
L : 流道長度 ( mm )
runner length in mm
流道尺寸設計 (2)
Runner Sizing (2)
流道尺寸設計 (3)
Runner Sizing (3)
D1 
W 1  4 L1
3 .7
L1  30 mm
2

  10
2 

W 1  0 . 9 g / cm  0 . 2 cm 
cm 
4


3
 14 . 14 g
D 1  2 . 38 ~ 3 mm
流道尺寸設計 (4)
Runner Sizing (4)
D2 
W 2  4 L2
3 .7
L 2  80 mm
2




0
.
3
3
2 
W 2  W 1  0 . 9 g / cm  3 cm 
cm    2
4



 14 . 14 g  0 . 19 g   2
 28 . 66 g
D 2  4 . 33 ~ 5 mm
流道尺寸設計(A1)
Runner Sizing (A1)
for PS, ABS, SAN, CAB
G( g )
G : 重量
weight
S : 零件厚度
thickness
D' : 參考直徑
reference diameter
D' ( mm )
流道尺寸設計(A2)
Runner Sizing (A2)
for PE, PP, PA, POM
G( g )
G : 重量
weight
S : 零件厚度
thickness
D' : 參考直徑
reference diameter
D' ( mm )
流道尺寸設計(B)
Runner Sizing (B)
D = D' ‧fL
L (mm)
fL
D' : 參考直徑
reference diameter
L : 長度
length
fL : 長度係數
Length coefficient
D : 流道直徑
runner diameter
冷料井設計
Cold Slug Well Design
2d
次流道
Secondary runner
澆口
d
Gate
型腔
Cavity
主流道
Primary runner
冷料井設計
Cold Slug Well Design
倒椎度冷料井
豎澆道拉料桿
Z型冷料井
豎澆道拉料桿
溝型冷料井
豎澆道拉料桿
Reverse taper cold
slug-well sprue puller
" Z "- taper cold
slug-well sprue puller
Grooved cold
slug-well sprue puller
澆道襯套尺寸
Sprue Bushing Sizing