Transcript PPT

EE 4271 VLSI Design, Fall 2013 Combinational Circuits

Overview

• • Combinational Circuit Chip Design styles – Full-custom design – Cell library based design – Programmable Logic Array 2020/4/30 Combinational Logic PJF- 2

Combinational Circuits

• • • A combinational circuit consists of logic gates whose outputs, at any time, are determined by combining the values of the inputs.

For n input variables, there are 2

n

binary input combinations.

possible For each binary combination of the input variables, there is one possible output.

2020/4/30 Combinational Logic PJF- 3

Combinational Circuits (cont.)

• Hence, a combinational circuit can be described by: 1. A truth table that lists the output values for each combination of the input variables, or 2. m Boolean functions, one for each output variable.

n-inputs ••• Combinational Circuit ••• m-outputs 2020/4/30 Combinational Logic PJF- 4

Combinational vs. Sequential Circuits

  Combinational circuits are memory-less.

Thus, the output value depends ONLY on the current input values.

Sequential circuits consist of combinational logic as well as memory elements (used to store certain circuit states). Outputs depend on BOTH current input values and previous input values (kept in the storage elements).

2020/4/30 Combinational Logic PJF- 5

Combinational vs. Sequential Circuits

n-inputs Combinational Circuit m-outputs (Depend only on inputs)

Combinational Circuit

n-inputs Combinational Circuit m-outputs 2020/4/30

Sequential Circuit

Combinational Logic PJF- 6

Important Design Concepts

• • Modern digital design deals with various methods and tools that are used to design and verify complex circuits and systems. Concepts: – Design Hierarchy – Computer-Aided-Design (CAD) tools – Hardware Description Languages (HDLs) 2020/4/30 Combinational Logic PJF- 7

Design Hierarchy

• • “ Divide-and-Conquer” approach used to cope with the challenges of designing complex circuits and systems (many times in the order of millions of gates).

Circuit is broken into blocks, repetitively.

2020/4/30 Combinational Logic PJF- 8

Design Hierarchy Example: 9-input odd function (for counting # of 1 in inputs)

2020/4/30 Combinational Logic PJF- 9

Why is Hierarchy useful?

• • Reduces the complexity required to design and represent the overall schematic of the circuit.

Reuse of blocks is possible. Identical blocks can be used in various places in a design, or in different designs.

2020/4/30 Combinational Logic PJF- 10

• •

Reusable Functions and CAD

Whenever possible, we try to decompose a complex design into common, reusable function blocks These blocks are – verified and well-documented – placed in libraries for future use 2020/4/30 Combinational Logic PJF- 11

Integrated Circuits

• • Integrated circuit (a chip) is a semiconductor crystal (most often silicon) containing the electronic components for the digital gates and storage elements which are interconnected on the chip.

Terminology - Levels of chip integration – SSI (small-scale integrated) - fewer than 10 gates – – – MSI (medium-scale integrated) - 10 to 100 gates LSI (large-scale integrated) - 100 to thousands of gates VLSI (very large-scale integrated) - thousands to 100s of millions of gates 2020/4/30 Combinational Logic PJF- 12

Technology Parameters

Specific gate implementation technologies are characterized by the following parameters: – Fan-in – the number of inputs available on a gate – Fan-out – the number of standard loads driven by a gate output – Cost for a gate - a measure of the contribution by the gate to the cost of the integrated circuit – Propagation Delay – The time required for a change in the value of a signal to propagate from an input to an output – Power Dissipation – the amount of power drawn from the power supply and consumed by the gate 2020/4/30 Combinational Logic PJF- 13

Propagation Delay

• • • Propagation delay is the time for a change on an input of a gate to propagate to the output.

Delay is usually measured at the 50% point with respect to the H and L output voltage levels.

High-to-low falling and low-to-high rising delays.

2020/4/30 Combinational Logic PJF- 14

Propagation Delay Example

2020/4/30

1.0 ns per division

Combinational Logic

t

(ns) PJF- 15

Chip Design Styles

• • • Full custom - the entire design of the chip down to the smallest detail of the layout is performed – – Expensive, its timing and power is hard to analyze only for dense, fast chips with high sales volume Standard cell - blocks have been design ahead of time or as part of previous designs – – Intermediate cost Less density and speed compared to full custom Gate array - regular patterns of gate transistors that can be used in many designs built into chip - only the interconnections between gates are specific to a design – Lowest cost – – Less density compared to full custom and standard cell Prototype design – The base of FPGA 2020/4/30 Combinational Logic PJF- 16

• • •

Cell Libraries

Cell - a pre-designed primitive block Cell library - a collection of cells available for design using a particular implementation technology Cell characterization - a detailed specification of a cell for use by a designer 2020/4/30 Combinational Logic PJF- 17

Cell Library Based Design Procedure

1.

2.

3.

– Specification Write a specification for the circuit if one is not already available – Formulation Derive a truth table or initial Boolean equations that define the required relationships between the inputs and outputs, if not in the specification – Optimization Draw a logic diagram or provide a netlist for the resulting circuit using ANDs, ORs, and inverters 2020/4/30 Combinational Logic PJF- 18

Cell Library Based Design Procedure

4. Technology Mapping – Map the logic diagram to the implementation technology selected – Map to CMOS 5. Evaluation – Evaluate the timing and power 2020/4/30 Combinational Logic PJF- 19

Design Example

1. Specification – BCD to Excess-3 code converter – Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits – BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively – Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011) added to each BCD code word 2020/4/30 Combinational Logic PJF- 20

Design Example (continued)

2.

– – – – 2020/4/30 Formulation Conversion of 4-bit codes can be most easily formulated by a truth table Variables - BCD: A,B,C,D Variables - Excess-3 W,X,Y,Z Don’t Cares - BCD 1010 to 1111

Input BCD A B C D 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1

Combinational Logic

Output Excess-3 WXYZ 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1

PJF- 21

Design Example (continued)

3. Optimization a. K-maps

z A 1 0 1 4 X 12 1 8 X 13 5 1 9 X 15 7 X 11 3 C 1 2 1 6 X 14 X 10 B y A 1 0 1 4 X 12 1 8 X 13 5 1 9 1 3 C 1 7 X 15 X 11 X 14 6 X 10 2 D D

W = A + BC + BD

CD

Y = CD + Z =

D CD

2020/4/30

x A 1 1 4 X 12 0 8 X 13 5 1 9 1 1 3 C 1 2 X 15 X 11 7 X 14 6 X 10 B w C A X 12 4 1 8 0 1 5 1 X 13 1 9 1 7 3 X 15 X 11 1 6 2 X 14 X 10 D

PJF- 22

B B

Design Example (continued)

3. Optimization (continued) – Multiple-level using transformations W = A + BC + BD Y = CD +

D B CD CD

Perform extraction, finding factor: T 1 = C + D W = A + BT 1 Z =

B D

1 Y = CD + + B

CD C D

2020/4/30 Combinational Logic PJF- 23

Design Example (continued)

4. Technology Mapping Map with a library containing inverters and 2-input NAND, and then map it to a CMOS based circuit A W B X C D 2020/4/30 Combinational Logic Y Z Z

Technology Mapping Example

2020/4/30 Combinational Logic PJF- 25

Timing Analysis

• Use static timing analysis which has been covered.

2020/4/30 Combinational Logic PJF- 26

• • • •

Transmission Gate Based Design Multiplexer

“ Selects” binary information from one of many input lines and directs it to a single output line.

Also know as the “selector” circuit, Selection is controlled by a particular set of inputs lines whose # depends on the # of the data input lines.

For a 2

n

-to-1 multiplexer, there are 2 determines which input is selected.

n

data input lines and n selection lines whose bit combination 30-Apr-20 Combinational Logic PJF - 27

Multiplexer (cont.)

30-Apr-20 Combinational Logic PJF - 28

2-to-1-Line Multiplexer

• • • • Since 2 = 2 1 , n = 1 The single selection variable S has two values: – – S = 0 selects input I 0 S = 1 selects input I 1 The equation: Y = S’ I 0 + SI 1 The circuit: Decoder Enabling Circuits I 0 S 30-Apr-20 Combinational Logic I 1 PJF - 29 Y

Example: 4-to-1 MUX - Cell Library Based Design 30-Apr-20 Combinational Logic PJF - 30

4–to–1-Line Multiplexer using Transmission Gates

30-Apr-20 Combinational Logic PJF - 31

MUX as a Universal Gate

• We can construct AND and NOT gates using 2-to-1 MUXs. Thus, 2-to-1 MUX is a universal gate. 30-Apr-20 z = 0x + 1x’ = x’ Combinational Logic z = x 1 x 0 + 0x 0 ’ = x 1 x 0 PJF - 32

Programmable Logic Array

• • The set of functions to be implemented is first transformed to product terms Since output inversion is available, terms can implement either a function or its complement 30-Apr-20 Combinational Logic PJF - 33

Programmable Logic Array Example

• To implement – – F1= A’B’C+A’BC’+AB’C’=(AB+AC+BC+A’B’C’)’ F2=AB+AC+BC 30-Apr-20 Combinational Logic PJF - 34

Programmable Logic Array Example

A B C 30-Apr-20 X X X X X X X X X C C B B A A 3 4 1 2 Combinational Logic X X X X X X X X Fuse intact Fuse blown X X 0 1 F 1 F 2 PJF - 35

Summary

• • Three design styles – Full custom design – Gate library based design – PLA based design Transmission gate based design 2020/4/30 Combinational Logic PJF- 36