Centrality classification

Download Report

Transcript Centrality classification

Определение центральности столкновения ядер
с использованием калориметра cпектаторов
в эксперименте MPD@NICA
M.Golubeva, F.Guber, A.Ivashkin, A.Kurepin,
INR, Moscow
A.Litvinenko, E.Litvinenko, A.Isupov, I.Migulina,
V.Peresedov, JINR, Dubna
A.Litvinenko, [email protected]
A.Litvinenko
VBLHEP JINR
Outline
 Introduction
Some definitions
Spectators
 UrQMD generator
 LAQGSM generator
 UrQMD - SHIELD - LAQGSM
 Conclusions
A.Litvinenko
VBLHEP JINR
NICA
A.Litvinenko
VBLHEP JINR
MPD
A.Litvinenko
VBLHEP JINR
Nuclear-Nuclear collisions
 Quasi-Classical picture
b – not observable
 observables
A.Litvinenko
b
VBLHEP JINR
Centrality classification
2R
 geo  2  bdb   (2 R) 2
Geometrical cross section
0
Value of impact parameter
b  2  4 fm (2  8%)
In percent from the geometrical cross section
b
σ ( b)  2π  bdb  π ( b) 2 ;
σ (bmin ) σ (bmax )


σ geo
σ geo
2
2
 b min   b max 

  
 ( %)
 2RA   2RA 
0
Corresponds to the region impact parameter
Centrality
40  50 %
bmin  0.4 (2R)  0.63(15)fm 9.5fm
bmax  0.5 (2R)  0.71(15)fm 10.6fm
6
Centrality classification
1.
bmin  b  bmax (fm)
Impact parameter
2. Fraction from total cross-section
2
2
 b min   b max 

  
 ( %)
 2R A   2R A 
3. Number of participant
…. ?
N part .
Centrality classification
8
The importance of the centrality classification
Space eccentricity
Elliptic flow
dN
1

(1  2v1 cos  2v 2 cos 2  ...)
d
2
v2
A2 =
ε
Nuclear Physics A
V757, No. 1-2 , p.184,2005
elliptic flow scaling
with space eccentricity
A.Litvinenko
short equlibration time
VBLHEP JINR
The importance of the centrality study
Nuclear modification factor
Nuclear Physics A
V757, No. 1-2 , p.184,2005
Jet Quenching – nuclear modification
factor vs centrality
A.Litvinenko
VBLHEP JINR
The importance of the centrality study
A.Litvinenko
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
Nucleon spectators (spectrum)
  Em  p(backward)  X
~
 Em  pX
  Pb  nX
 C  nX
R.Ammarи et al., Pisma v JETF,
V.94, No. 4, p.189, (1989)
A.Litvinenko
Yu.Bayukov et al ., YaF
V.35, No. 4, p.960, (1982)
VBLHEP JINR
Spectator spectrum
d
E 3  C  e xp(-T/T0 )
dp
T0  5 - 10 МэВ
PS PF - m 2N
d
E 3  C  e xp()
dp
m N T0
(p - pb ) 2
dσ
Θ2
E 3 = C • exp() • exp(- 2 )
2
dp
2σ p
2σ Θ
p 
A.Litvinenko
EbT0
mNT0
 0.15- 0.22GeV/c;   
 0.016- 0.022
2
mN
pb
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
Front view of ZDC. The squares size is 5 x 5 cm x cm
A.Litvinenko
VBLHEP JINR
ZDC@MPD geometrical efficiency
 (ZDC)  NS (ZDC) / NS (tot.)
central hole
2


rint/L ZDC e xp(- 2 )d )
2 
 ( ZDC) 
2

0 e xp(- 2 )d )
2 
 50  70 %
out of ZDC
ε ( ZDC) > 0.99
A.Litvinenko
VBLHEP JINR
Simulation
Transport – Geant3 and Geant4, generates UrQMD and LAQGSM
framework MpdRoot
A.Litvinenko
VBLHEP JINR
Optimistic results with UrQMD
URQMD generator, Sqrt(S)=5 GeV
Total kinetic energy of all nucleons
directed to ZDC
A.Litvinenko
VBLHEP JINR
Optimistic results with UrQMD
UrQMD generator, Sqrt(S)=9 GeV
ε=
ΔEZDC
( S NN - 2mN )A
= 0.78
Total kinetic energy of all nucleons
directed to ZDC
A.Litvinenko
VBLHEP JINR
The accuracy of impact parameter
determination for MC with UrQMD
N(b) = A • b + C ;ΔN = N ;
δN = 1/ N(b)
E(b) = Tb • N(b); ΔE = Tb • N ; δE = 1/ N(b)
N(b)
N(b) - C
1
b=
; Δb =
N(b); δb =
A
A
N(b) - C
b = 0 fm ; Δb = 0.35fm; δb =
E(b) = 114Ge V; ΔE = 20 Ge V; δE = 18 %
b = 5 fm ; Δb = 0.67fm; δb = 13 %
E(b) = 392Ge V; ΔE = 38 Ge V; δE = 10 %
b = 10 fm ; Δb = 0.87fm; δb = 9 %
E(b) = 673Ge V; ΔE = 49 Ge V; δE = 7 %
ΔE
β
=
;
E
E
A.Litvinenko
β << 150%
VBLHEP JINR
The centrality resolution evaluations √S=9 AGeV
22
But
The NA49 collaboration. Eur. Phys. J., A2, 383, (1998)
A.Litvinenko
VBLHEP JINR
But
LAQGSM high-energy event generator
A.Litvinenko
VBLHEP JINR
Taking into account spectator fragments
LAQGSM generator, Sqrt(S)=5 GeV
Total kinetic energy of all nucleons
and fragments directed to ZDC
A.Litvinenko
VBLHEP JINR
Taking into account spectator fragments
LAQGSM generator, Sqrt(S)=9 GeV
A.Litvinenko
Total kinetic energy of all nucleons
and fragments directed to ZDC
VBLHEP JINR
SHIELD event generator
A.Litvinenko
VBLHEP JINR
LAQGSM, Sqrt(S)=5 GeV
A.Litvinenko
URQMD, Sqrt(S)=5 GeV
Total kinetic energy of all nucleons
and fragments directed to ZDC
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
Experimental data : the deposited energy for different
types of spectators in dependence of the centrality
The NA49 collaboration. Eur. Phys. J., A2, 383, (1998)
At large impact parameters the most of
spectator nucleons are bound in fragments.
A.Litvinenko
VBLHEP JINR
All nucleons directed to the hole of ZDC
(rectangle 10x10cm2)
0 % - 60 %
60 % - 80 %
80 % - 100 %
θ ~ 0.3 • 10-3 rad = 0.3 mrad
A.Litvinenko
VBLHEP JINR
Experimental data : the deposited energy for different
types of spectators in dependence of the centrality
The NA49 collaboration. Eur. Phys. J., A2, 383, (1998)
At large impact parameters the most of
spectator nucleons are bound in fragments.
A.Litvinenko
VBLHEP JINR
The centrality resolution evaluations
√S=9 AGeV
Kinetic energy of all spectators directed to solid angle 5º
33
The centrality resolution evaluations √S=9 AGeV
The centrality resolution evaluations √S=9 AGeV
The centrality resolution evaluations √S=9 AGeV
The centrality determination:
ZDC (energy) + number of charged barrel tracks
A.Litvinenko
VBLHEP JINR
UrQMD - SHIELD - LAQGSM
b < 3 фм (0 – 4 %)
A.Litvinenko
VBLHEP JINR
UrQMD - SHIELD - LAQGSM
3 фм < b < 9.5 фм (4 – 40 %)
A.Litvinenko
VBLHEP JINR
UrQMD - SHIELD - LAQGSM
9.5 фм < b
A.Litvinenko
(40 – 100 %)
VBLHEP JINR
Centrality determination in some experiment
PHENIX
NA49
STAR
y=0
A.Litvinenko
NA49
ZDC Only
STAR
TPC only
PHENIX
BBC & ZDC
y=3
y>6
VBLHEP JINR
Conclusions
• The SHIELD and LAQGSM could be used
for NICA/MPD simulations under mpdroot.
• The SHIELD and LAQGSM angular
distributions of the spectators differ from
URQMD picture.
• The experimental study of the spectator
distributions and calorimeter resolution have
to be performed on the extracted beam of
NUCLOTRON-M at the fixed target.
A.Litvinenko
VBLHEP JINR
Conclusions
• Работа выполнена при
поддержке грантов РФФИ
10-02-01036-а
11-02-01026-а
A.Litvinenko
VBLHEP JINR
Backup slides
A.Litvinenko
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
Fast evaluations: the movement of spectators at NICA/MPD
Y X pb

 0.3Q B z 
pT A

sin
x( z ) 
0.3Q B  p z A 


 y( z )  p T A cos 0.3Q B z  - p T A
 p A  0.3Q B

0.3
Q
B
z



Z
B 1T

 0.3Q B z  
pT A
 
(B, z )  x  y 
2 1  cos
0.3Q B 
 pz A  
2
2
 0.3QB  z 
pT
1  0.3QB  z 

  0.2   ( B, z ) 

z ;   
pz
2  pz A 
 pz A 
The conclusion:
Magnetic field of MPD will not change the polar angles
for spectators at ZDC position
 it will only slightly changes the azimutal angles
A.Litvinenko
  pT / p z
  60
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
Centrality classification
C.E.Aguilar et al., Brazilian Journal of Physics, V.34,No.1,p.319,(2004)
A.Litvinenko
VBLHEP JINR
Calorimeter No.1
A.Litvinenko
VBLHEP JINR
Calorimeter No.1
A.Litvinenko
VBLHEP JINR
Calorimeter No.1
A.Litvinenko
VBLHEP JINR
Calorimeter No.1
A.Litvinenko
VBLHEP JINR
Linearity
Resolution
Longitudinal distribution
A.Litvinenko
VBLHEP JINR
Calorimeter No.1
A.Litvinenko
VBLHEP JINR
CONCLUSION
A.Litvinenko
VBLHEP JINR
Пространственное разрешение
A.Litvinenko
VBLHEP JINR
ZDC
N part
E ZDC (GeV )
Pz (GeV / c)
Pz (GeV / c)
N part
N part
Px (GeV / c)
Pz (GeV / c)
A.Litvinenko
Pz (GeV / c)
VBLHEP JINR
ZDC + Multiplicity
N ch
1000 Min Bias
A.Litvinenko
VBLHEP JINR
ZDC + Multiplicity
N ch
N ch
N ch
N ch
A.Litvinenko
1000 Min Bias
VBLHEP JINR
A.Litvinenko
VBLHEP JINR
PHENIX
ZDC + BBC
A.Litvinenko
VBLHEP JINR
NA49
VCAL (ZDC)
A.Litvinenko
VBLHEP JINR
TIME = 0 fm/c,
  0.7
65
TIME = 1 fm/c,
  0.6
66
TIME = 2 fm/c,
  0.5
67
TIME = 3 fm/c,
  0.3
68