6.Jost関数法と共鳴部分幅および仮想状態

Download Report

Transcript 6.Jost関数法と共鳴部分幅および仮想状態

Jost関数法と共鳴部分幅および仮
想状態
(1) Jost 関数法 (Jost Function Method)
(2) 共鳴部分幅 (Partial Widths)
(3) 仮想状態 (Virtual States)
Table I. Values of the resonant poles of the Noro-Taylor model.
pole
Er (a.u.)
Γ (a.u.)
1
4.768197
2
7.241200
1.511912
3
8.171216
6.508332
4
8.440526
12.56299
5
8.072642
19.14563
6
7.123813
7
5.641023
33.07014
8
3.662702
40.19467
9
1.220763
47.33935
10
-1.658115
54.46087
11
-4.950418
61.52509
12
-8.635939
68.50621
1.420192 ×10 -3
26.02534
Partial Decay Widths
Channel radius dependence
Definition of partial widths
lim res (r )   Ac H
r 
()
c
( kc r )
c
 c kc A

c
 c kc A
c2
1
2
1
2
1
2
c2
2
c1

N

n 1
n
N. Moiseyv and U. Peskin; Phys. Rev. A42(1990) 255.
Partial widths of resonant states
Jost Function Method;
S.A. Sofianos and S.A. Rakityansky
J. Phys. A: Math. Gen. 30(1997), 3725,
J. Phys. A: Math. Gen. 31(1998), 5149.
()
 r Fnm
( E, r )

n
i 2 k n
() N
H n  Vnn'{H n( ' ) Fn('m)
n '1
H n(  ) (kn , r ) : Homogeneous solutions
det F
( )
( E , )  0 : Resonances
 H n( ' ) Fn('m) }
Partial Width
Snn ' (E)  S (E) nn '
B
n
n n '
i
E  E r  i / 2
n
( E  Eres ) S nn
S nn
| Elim
|

|
|
 Eres
n '
( E  Eres ) S n 'n ' S n 'n '
F


F
()


Eres
F
()
nn
Eres
()
F
()

m
F ( Eres )Gmn ( Eres )
()
n 'm
F ( Eres )Gmn' ( Eres )
n 'n '
1
F ( E , ) nm
()


m
()
nm
Gnm ( E )

()
det{F ( E , )}
Current density method for partial widths
N. Moiseyev and U. Peskin; Phys. Rev. A42(1990) 255.
 res  n1 n (r ),
 n (r ) 
A
j
(
r
),
r 
n n
jn (r ) 
n
()
H
(
k
,
r
)
n
kn
Partial Width: n   n ' k n An
n '
 n k n ' An '
2
T-matrix scheme
n ( | V |  res ) 2
|
|
n ' ( | V |  res )
(f )
n
(f )
n'
 res (r)   n (r)
n

n
 (r ) 
(f )
n
k n
H (n ) (k n r )
((nf ) | V |  res ) 


i
n
n
n
( )
drH
(k n r ) Vnn 'n ' (r )

k n
k n
n'
( )
drH
(k n r ) Vnn '  c m n 'm (r )

n'
m


( )
c m  drH (k n r ) Vnn 'n 'm (r)
k n 
m
n'


n
k n
c
m
m
()
Fnm
(E res , )
n (r) r
a  (r)

(f )
n n
  c m nm (r ) 

a n  lim m ( f )
r  
 n (r ) 


1

()
()
()
()
 2  c m {H n (k n r )Fnm (E r , r )  H n (k n r )Fnm (E r , r )}
 lim m

r 
n


H (n ) (k n r )
k n


1 k n
()

c
F
( E r , )

m
nm
n m
2
lim  res (r )  lim  A n H (k n r )
r 
r 
()
n
n
 lim  H (k n r ) c F (E res , r )
r 

()
n
n
()
m nm
m
An  N c F (E res , )
()
m nm
m

N

n 1
n
Jost Function Method
+ Complex Scaling Method
Complex Scaled Jost Function Method;
(CSJFM)
Application to a three body resonance
5He: 4He+n
H. Masui, S. Aoyama, T. Myo, K. Kato and K. Ikeda, Nucl. Phys. A673 (2000), 207
10Li: 9Li+n