PPT - Math For College
Download
Report
Transcript PPT - Math For College
Gauss-Siedel Method
Electrical Engineering Majors
Authors: Autar Kaw
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
4/13/2015
http://numericalmethods.eng.usf.edu
1
Gauss-Seidel Method
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
An iterative method.
Basic Procedure:
-Algebraically solve each linear equation for xi
-Assume an initial guess solution array
-Solve for each xi and repeat
-Use absolute relative approximate error after each iteration
to check if error is within a pre-specified tolerance.
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Why?
The Gauss-Seidel Method allows the user to control round-off error.
Elimination methods such as Gaussian Elimination and LU
Decomposition are prone to prone to round-off error.
Also: If the physics of the problem are understood, a close initial
guess can be made, decreasing the number of iterations needed.
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Algorithm
A set of n equations and n unknowns:
a11x1 a12 x2 a13 x3 ... a1n xn b1
a21 x1 a22 x2 a23 x3 ... a2n xn b2
.
.
.
.
.
.
an1x1 an2 x2 an3 x3 ... ann xn bn
If: the diagonal elements are
non-zero
Rewrite each equation solving
for the corresponding unknown
ex:
First equation, solve for x1
Second equation, solve for x2
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Algorithm
Rewriting each equation
x1
c1 a12 x2 a13 x3 a1n xn
a11
From Equation 1
c2 a21 x1 a23 x3 a2 n xn
a22
From equation 2
x2
xn 1
xn
cn 1 an 1,1 x1 an 1, 2 x2 an 1,n 2 xn 2 an 1,n xn
From equation n-1
an 1,n 1
cn an1 x1 an 2 x2 an ,n 1 xn 1
From equation n
ann
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Algorithm
General Form of each equation
n
c1 a1 j x j
x1
j 1
j 1
a11
cn1
xn1
n
a
j 1
j n 1
n 1, j
xj
an1,n1
n
c n a nj x j
n
c2 a2 j x j
x2
j 1
j 2
a 22
xn
j 1
j n
a nn
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Algorithm
General Form for any row ‘i’
n
ci aij x j
xi
j 1
j i
aii
, i 1,2,, n.
How or where can this equation be used?
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Solve for the unknowns
Assume an initial guess for [X]
x1
x
2
xn-1
xn
Use rewritten equations to solve for
each value of xi.
Important: Remember to use the
most recent value of xi. Which
means to apply values calculated to
the calculations remaining in the
current iteration.
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Calculate the Absolute Relative Approximate Error
a i
xinew xiold
100
new
xi
So when has the answer been found?
The iterations are stopped when the absolute relative
approximate error is less than a prespecified tolerance for all
unknowns.
http://numericalmethods.eng.usf.edu
Example: Unbalanced three phase load
Three-phase loads are common in AC systems. When the system
is balanced the analysis can be simplified to a single equivalent circuit
model. However, when it is unbalanced the only practical solution
involves the solution of simultaneous linear equations. In a model the
following equations need to be solved.
0.7460 0.4516
0.4516 0.7460
0.0100 0.0080
0.0080 0.0100
0.0100 0.0080
0.0080 0.0100
0.0100 0.0080 0.0100 0.0080 I ar 120
0.0080 0.0100 0.0080 0.0100 I ai 0.000
0.7787 0.5205 0.0100 0.0080 I br 60.00
0.5205 0.7787 0.0080 0.0100 I bi 103.9
0.0100 0.0080 0.8080 0.6040 I cr 60.00
0.0080 0.0100 0.6040 0.8080 I ci 103.9
Find the values of Iar , Iai , Ibr , Ibi , Icr , and Ici using the Gauss-Seidel
method.
Example: Unbalanced three phase load
Rewrite each equation to solve for each of the unknowns
I ar
120 .00 0.4516 I ai 0.0100 I br 0.0080 I bi 0.0100 I cr 0.0080 I ci
0.7460
I ai
0.000 0.4516 I ar 0.0080 I br 0.0100 I bi 0.0080 I cr 0.0100 I ci
0.7460
I br
60.00 0.0100 I ar 0.0080 I ai 0.5205 I bi 0.0100 I cr 0.0080 I ci
0.7787
I bi
103.9 0.0080 I ar 0.0100 I ai 0.5205 I br 0.0080 I cr 0.0100 I ci
0.7787
I cr
60.00 0.0100 I ar 0.0080 I ai0.0100 I br 0.0080 I bi 0.6040 I ci
0.8080
I ci
103.9 0.0080 I ar 0.0100 I ai 0.0080 I br 0.0100 I bi 0.6040 I cr
0.8080
Example: Unbalanced three phase load
For iteration 1, start with an initial guess value
Initial Guess:
I ar 20
I 20
ai
I br 20
I bi 20
I cr 20
I ci 20
Example: Unbalanced three phase load
Substituting the guess values into the first equation
120 0.4516I ai 0.0100I br 0.0080I bi 0.0100I cr 0.0080I ci
0.7460
172.86
I ar
Substituting the new value of Iar and the remaining guess values into
the second equation
0.00 0.4516I ar 0.0080I br 0.0100I bi 0.0080I cr 0.0100I ci
0.7460
105.61
I ai
Example: Unbalanced three phase load
Substituting the new values Iar , Iai , and the remaining guess values into
the third equation
60.00 0.0100I ar 0.0080I ai 0.5205I bi 0.0100I cr 0.0080I ci
0.7787
67.039
I br
Substituting the new values Iar , Iai , Ibr , and the remaining guess values into
the fourth equation
103.9 0.0080I ar 0.0100I ai 0.5205I br 0.0080I cr 0.0100I ci
0.7787
89.499
I bi
Example: Unbalanced three phase load
Substituting the new values Iar , Iai , Ibr , Ibi , and the remaining guess
values into the fifth equation
60.00 0.0100I ar 0.0080I ai0.0100I br 0.0080I bi 0.6040I ci
0.8080
62.548
I cr
Substituting the new values Iar , Iai , Ibr , Ibi , Icr , and the remaining guess
value into the sixth equation
103.9 0.0080I ar 0.0100I ai 0.0080I br 0.0100I bi 0.6040I cr
0.8080
176.71
I ci
Example: Unbalanced three phase load
At the end of the first iteration, the solution matrix is:
I ar 172.86
I 105.61
ai
I br 67.039
I
89
.
499
bi
I cr 62.548
I
176
.
71
ci
How accurate is the solution? Find the absolute relative
approximate error using:
a i
xinew xiold
100
new
xi
Example: Unbalanced three phase load
Calculating the absolute relative approximate errors
172.86 20
100 88.430%
172.86
a 5
62.548 20
100 131.98%
62.548
a 2
105.61 20
100 118.94%
105.61
a 6
176.71 20
100 88.682%
176.71
a 3
67.039 20
100 129.83%
67.039
a 1
a
4
89.499 20
100 122.35%
89.499
The maximum error after
the first iteration is:
131.98%
Another iteration is needed!
Example: Unbalanced three phase load
Starting with the values obtained in iteration #1
I ar 172.86
I 105.61
ai
I br 67.039
I
89
.
499
bi
I cr 62.548
I
176
.
71
ci
Substituting the values from Iteration 1 into the first equation
120.00 0.4516I ai 0.0100I br 0.0080I bi 0.0100I cr 0.0080I ci
I ar
0.7460
99.600
Example: Unbalanced three phase load
Substituting the new value of Iar and the remaining values from
Iteration 1 into the second equation
0.00 0.4516I ar 0.0080I br 0.0100I bi 0.0080I cr 0.0100I ci
0.7460
60.073
I ai
Substituting the new values Iar , Iai , and the remaining values from
Iteration 1 into the third equation
60.00 0.0100I ar 0.0080I ai 0.5205I bi 0.0100I cr 0.0080I ci
0.7787
136.15
I br
Example: Unbalanced three phase load
Substituting the new values Iar , Iai , Ibr , and the remaining values from
Iteration 1 into the fourth equation
103.9 0.0080I ar 0.0100I ai 0.5205I br 0.0080I cr 0.0100I ci
0.7787
44.299
I bi
Substituting the new values Iar , Iai , Ibr , Ibi , and the remaining values
From Iteration 1 into the fifth equation
60.00 0.0100I ar 0.0080I ai0.0100I br 0.0080I bi 0.6040I ci
0.8080
57.259
I cr
Example: Unbalanced three phase load
Substituting the new values Iar , Iai , Ibr , Ibi , Icr , and the remaining
value from Iteration 1 into the sixth equation
103.9 0.0080I ar 0.0100I ai 0.0080I br 0.0100I bi 0.6040I cr
0.8080
87.441
I ci
The solution matrix at the end of
the second iteration is:
I ar 99.600
I 60.073
ai
I br 136.15
I
44
.
299
bi
I cr 57.259
I ci 87.441
Example: Unbalanced three phase load
Calculating the absolute relative approximate errors for
the second iteration
a 1
a 2
a 3
a 4
99.600 172.86
100 73.552%
99.600
60.073 (105.61)
100 75.796%
60.073
136.35 (67.039)
100 50.762%
136.35
44.299 (89.499)
100 102.03%
44.299
a 5
57.259 (62.548)
100 209.24%
57.259
a 6
87.441 176.71
100 102.09%
87.441
The maximum error after
the second iteration is:
209.24%
More iterations are needed!
Example: Unbalanced three phase load
Repeating more iterations, the following values are obtained
Iteration
1
2
3
4
5
6
Iteration
1
2
3
4
5
6
Iar
Iai
Ibr
Ibi
Icr
Ici
172.86
99.600
126.01
117.25
119.87
119.28
−105.61
−60.073
−76.015
−70.707
−72.301
−71.936
−67.039
−136.15
−108.90
−119.62
−115.62
−116.98
−89.499
−44.299
−62.667
−55.432
−58.141
−57.216
−62.548
57.259
−10.478
27.658
6.2513
18.241
176.71
87.441
137.97
109.45
125.49
116.53
a 1 %
a 2 %
a 3 %
a 4 %
a 5 %
a 6 %
88.430
73.552
20.960
7.4738
2.1840
0.49408
118.94
75.796
20.972
7.5067
2.2048
0.50789
129.83
50.762
25.027
8.9631
3.4633
1.1629
122.35
102.03
29.311
13.053
4.6595
1.6170
131.98
209.24
646.45
137.89
342.43
65.729
88.682
102.09
36.623
26.001
12.742
7.6884
Example: Unbalanced three phase load
After six iterations,
the solution matrix is
I ar 119.28
I 71.936
ai
I br 116.98
I
57
.
216
bi
I cr 18.241
I ci 116.53
The maximum error after
the sixth iteration is:
65.729%
The absolute relative approximate error is still high, but allowing for
more iterations, the error quickly begins to converge to zero.
What could have been done differently to allow for a faster
convergence?
Example: Unbalanced three phase load
Repeating more iterations, the following values are obtained
Iteration
32
33
Iar
119.33
119.33
Iai
Ibr
Ibi
Icr
−57.432
−57.432
13.940
13.940
Ici
−71.973
−71.973
−116.66
−116.66
a 2 %
a 3 %
a 4 %
a 5 %
a 6 %
119.74
119.74
Iteration
a 1 %
32
3.0666×10−7
3.0047×10−7
4.2389×10−7
5.7116×10−7
2.0941×10−5
1.8238×10−6
33
1.7062×10−7
1.6718×10−7
2.3601×10−7
3.1801×10−7
1.1647×10−5
1.0144×10−6
Example: Unbalanced three phase load
After 33 iterations, the solution matrix is
I ar 119.33
I 71.973
ai
I br 116.66
I
57
.
432
bi
I cr 13.940
I ci 119.74
The maximum absolute relative approximate error is 1.1647×10−5%.
Gauss-Seidel Method: Pitfall
Even though done correctly, the answer may not converge to the
correct answer.
This is a pitfall of the Gauss-Siedel method: not all systems of
equations will converge.
Is there a fix?
One class of system of equations always converges: One with a diagonally
dominant coefficient matrix.
Diagonally dominant: [A] in [A] [X] = [C] is diagonally dominant if:
n
n
aii aij
j 1
j i
for all ‘i’
and
aii aij
for at least one ‘i’
j 1
j i
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Pitfall
Diagonally dominant: The coefficient on the diagonal must be at least
equal to the sum of the other coefficients in that row and at least one row
with a diagonal coefficient greater than the sum of the other coefficients
in that row.
Which coefficient matrix is diagonally dominant?
2 5.81 34
A 45 43 1
123 16
1
124 34 56
[ B] 23 53 5
96 34 129
Most physical systems do result in simultaneous linear equations that
have diagonally dominant coefficient matrices.
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
Given the system of equations
12x1 3x2- 5x3 1
x1 5x2 3x3 28
3x1 7 x2 13x3 76
With an initial guess of
x1 1
x 0
2
x 3 1
The coefficient matrix is:
12 3 5
A 1 5 3
3 7 13
Will the solution converge using the
Gauss-Siedel method?
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
Checking if the coefficient matrix is diagonally dominant
12 3 5
A 1 5 3
3 7 13
a11 12 12 a12 a13 3 5 8
a22 5 5 a21 a23 1 3 4
a33 13 13 a31 a32 3 7 10
The inequalities are all true and at least one row is strictly greater than:
Therefore: The solution should converge using the Gauss-Siedel Method
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
Rewriting each equation
With an initial guess of
12 3 5 a1 1
1 5 3 a 28
2
3 7 13 a3 76
1 3 x 2 5 x3
x1
12
28 x1 3x3
x2
5
76 3 x1 7 x 2
x3
13
x1 1
x 0
2
x 3 1
x1
1 30 51
0.50000
12
28 0.5 31
x2
4.9000
5
76 30.50000 74.9000
x3
3.0923
13
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
The absolute relative approximate error
0.50000 1.0000
a 1
100 100.00%
0.50000
a
a
2
3
4.9000 0
100 100.00%
4.9000
3.0923 1.0000
100 67.662%
3.0923
The maximum absolute relative error after the first iteration is 100%
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
After Iteration #1
x1 0.5000
x 4.9000
2
x3 3.0923
Substituting the x values into the
equations
x1
1 34.9000 53.0923
0.14679
12
x2
28 0.14679 33.0923
3.7153
5
x3
76 30.14679 74.900
3.8118
13
After Iteration #2
x1 0.14679
x 3.7153
2
x3 3.8118
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
Iteration #2 absolute relative approximate error
a 1
a
a
2
3
0.14679 0.50000
100 240.61%
0.14679
3.7153 4.9000
100 31.889%
3.7153
3.8118 3.0923
100 18.874%
3.8118
The maximum absolute relative error after the first iteration is 240.61%
This is much larger than the maximum absolute relative error obtained in
iteration #1. Is this a problem?
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 2
Repeating more iterations, the following values are obtained
Iteration
a1
a 1 %
a2
a 2 %
a3
1
2
3
4
5
6
0.50000
0.14679
0.74275
0.94675
0.99177
0.99919
100.00
240.61
80.236
21.546
4.5391
0.74307
4.9000
3.7153
3.1644
3.0281
3.0034
3.0001
100.00
31.889
17.408
4.4996
0.82499
0.10856
3.0923
3.8118
3.9708
3.9971
4.0001
4.0001
a 3 %
67.662
18.876
4.0042
0.65772
0.074383
0.00101
x1 0.99919
The solution obtained x 3.0001 is close to the exact solution of
2
x3 4.0001
x1 1
x 3 .
2
x 3 4
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 3
Given the system of equations
3x1 7 x2 13x3 76
Rewriting the equations
x1 5x2 3x3 28
76 7 x2 13 x3
x1
3
12x1 3x2 5x3 1
With an initial guess of
x1 1
x 0
2
x3 1
28 x1 3 x3
x2
5
1 12 x1 3 x 2
x3
5
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method: Example 3
Conducting six iterations, the following values are obtained
Iteration
a1
1
2
3
4
5
6
21.000
−196.15
−1995.0
−20149
2.0364×105
−2.0579×105
a 1 %
A2
95.238
0.80000
110.71
14.421
109.83
−116.02
109.90
1204.6
109.89
−12140
109.89 1.2272×105
a 2 %
a3
a 3 %
100.00
94.453
112.43
109.63
109.92
109.89
50.680
−462.30
4718.1
−47636
4.8144×105
−4.8653×106
98.027
110.96
109.80
109.90
109.89
109.89
The values are not converging.
Does this mean that the Gauss-Seidel method cannot be used?
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
The Gauss-Seidel Method can still be used
The coefficient matrix is not
diagonally dominant
But this is the same set of
equations used in example #2,
which did converge.
3 7 13
A 1 5 3
12 3 5
12 3 5
A 1 5 3
3 7 13
If a system of linear equations is not diagonally dominant, check to see if
rearranging the equations can form a diagonally dominant matrix.
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Not every system of equations can be rearranged to have a
diagonally dominant coefficient matrix.
Observe the set of equations
x1 x2 x3 3
2 x1 3x2 4 x3 9
x1 7 x2 x3 9
Which equation(s) prevents this set of equation from having a
diagonally dominant coefficient matrix?
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Summary
-Advantages of the Gauss-Seidel Method
-Algorithm for the Gauss-Seidel Method
-Pitfalls of the Gauss-Seidel Method
http://numericalmethods.eng.usf.edu
Gauss-Seidel Method
Questions?
http://numericalmethods.eng.usf.edu
Additional Resources
For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit
http://numericalmethods.eng.usf.edu/topics/gauss_seid
el.html
THE END
http://numericalmethods.eng.usf.edu