Transcript Week4-1
Moment generating function
The moment generating function of random variable X is
given by
(t ) E[etX ]
Moment generating function
The moment generating function of random variable X is
given by
(t ) E[etX ]
(t ) etx p( x) if X is discrete
x
Moment generating function
The moment generating function of random variable X is
given by
(t ) E[etX ]
(t ) etx p( x) if X is discrete
x
(t ) etx f ( x)dx if X is continuous
dE[etX ]
d tX
'(t )
E[ e ] E[ XetX ]
dt
dt
'(0) E[ X ]
dE[etX ]
d tX
'(t )
E[ e ] E[ XetX ]
dt
dt
'(0) E[ X ]
d
(t ) E[ XetX ] E[ X 2 etX ]
dt
(2) (0) E[ X 2 ]
(2)
More generally,
d k 1 tX
(t ) E[ X e ] E[ X k etX ]
dt
( k ) (0) E[ X k ]
(k )
Example: X has the Poisson distribution with parameter l
Example: X has the Poisson distribution with parameter l
x l
x l
(
l
)
e
(
l
)
e
tX
tx
tx
(t ) E[e ] x 0 e
x 0 e
x!
x!
t x
t
(
l
e
)
l
l l et
l ( ee 1)
=e x 0
e e e
x!
Example: X has the Poisson distribution with parameter l
x l
x l
(
l
)
e
(
l
)
e
tX
tx
tx
(t ) E[e ] x 0 e
x 0 e
x!
x!
t x
(
l
e
)
l
l l et
l ( et 1)
=e x 0
e e e
x!
(t )
d [e
l ( et 1)
dt
]
t l ( et 1)
le e
Example: X has the Poisson distribution with parameter l
x l
x l
(
l
)
e
(
l
)
e
tX
tx
tx
(t ) E[e ] x 0 e
x 0 e
x!
x!
t x
(
l
e
)
l
l l et
l ( et 1)
=e x 0
e e e
x!
(t )
d [e
l ( et 1)
dt
]
l et el ( e 1)
t
ax
a
e
x 0 x!
t l ( et 1)
'(0) l e e
t 0
l
'(0) l e e
t l ( et 1)
''(0) l e e
t l ( et 1)
t 0
l
le le e
t
t l ( et 1)
t 0
l l2
t l ( et 1)
'(0) l e e
t l ( et 1)
''(0) l e e
t 0
l
t l ( et 1)
le le e
t
Var ( X ) E[ X 2 ] E[ X ]2 l
t 0
l l2
If X and Y are independent, then
X Y (t ) E[et ( X Y ) ] E[etX etY ) ] E[etX ]E[etY ]
= X (t )Y (t )
The moment generating function of the sum of two random
variables is the product of the individual moment generating
functions
Let Y = X1+X2 where X1~Poisson(l1) and X2~Poisson(l2) and
X1 and X1 are independent, then
E[etY ] E[et ( X1 X 2 ) ] E[etX1 ]E[etX 2 ]
=e
l1 ( et 1) l2 ( et 1)
e
e
( et 1)( l1 l2 )
Let Y = X1+X2 where X1~Poisson(l1) and X2~Poisson(l2) and
X1 and X1 are independent, then
E[etY ] E[et ( X1 X 2 ) ] E[etX1 ]E[etX 2 ]
=e
l1 ( et 1) l2 ( et 1)
e
Y ~ Poisson(l1 l2 )
e
( et 1)( l1 l2 )
Note: The moment generating function uniquely determines
the distribution.
Markov’s inequality
If X is a random variable that takes only nonnegative values,
then for any a > 0,
E[ X ]
P( X a)
.
a
Proof (in the case where X is continuous):
E[ X ] xf ( x )dx
a
a
xf ( x)dx xf ( x )dx
xf ( x)dx
a
a
a
af ( x)dx a f ( x)dx aP ( X a )
Strong law of large numbers
Let X1, X2, ..., Xn be a set of independent random variables
having a common distribution, and let E[Xi] = m. then, with
probability 1
X1 X1 ... X n
m
n
as n .
Central Limit Theorem
Let X1, X2, ..., Xn be a set of independent random variables
having a common distribution with mean m and variance s.
Then the distribution of
X 1 X 1 ... X n nm
s n
tends to the standard normal as n . That is
a
X 1 X 1 ... X n nm
1
x2 / 2
P(
a)
e
dx
s n
2
as n .
Conditional probability and
conditional expectations
Let X and Y be two discrete random variables, then the
conditional probability mass function of X given that Y=y is
defined as
P{ X x, Y y} p( x, y )
p X |Y ( x | y ) P{ X x | Y y}
.
P{Y y}
p( y )
for all values of y for which P(Y=y)>0.
Conditional probability and
conditional expectations
Let X and Y be two discrete random variables, then the
conditional probability mass function of X given that Y=y is
defined as
P{ X x, Y y} p( x, y )
p X |Y ( x | y ) P{ X x | Y y}
.
P{Y y}
p( y )
for all values of y for which P(Y=y)>0.
The conditional expectation of X given that Y=y is defined as
E[ X | Y y] xP{ X x | Y y} xpX |Y ( x | y).
x
x
Let X and Y be two continuous random variables, then the
conditional probability density function of X given that Y=y
is defined as
f ( x, y )
f X |Y ( x | y )
.
fY ( y )
for all values of y for which fY(y)>0.
The conditional expectation of X given that Y=y is defined as
E[ X | Y y] xf X |Y ( x | y)dx.
E[ X ] E[ E[ X | Y y ]] E[ E[ X | Y ]]
E[ X ] E[ X | Y y ]P(Y y ) if Y is discrete
y
E[ X ] E[ X | Y y ] f ( y ) dy if Y is continuous.
Proof: