Transcript PPT

Rheology
Complex Fluids & Molecular Rheology Lab., Department of Chemical
Engineering
中央大學化材系講稿
10/28/2011
什 麼 是 流 變 (Rheology)?

Rheology is the science of fluids. More specifically, the study
of Non-Newtonian Fluids
Y
 流體














牛頓流體
- 水、有機小分子溶劑等
黏度η為定值
非牛頓流體
- 高分子溶液、膠體等
Small molecule
Macromolecule
V
●
V
Newton’s law of viscosity
V
 yx    V
Y
Deformable
黏度不為定值
(尤其在快速流場下)
 非牛頓流體的三大特徵
 特徵時間與無因次群分析
非牛頓流體的特徵
 非牛頓黏度 (Non-Newtonian Viscosity)
- Shear Thinning
p

Flow curve for non-Newtonian
Fluids
牛頓流體
(甘油加水)
非牛頓流體
(高分子溶液)
 正向應力差值的效應 (Normal Stress Differences)
- Rod-Climbing
牛頓流體 (水)
非牛頓流體 (稀薄高分子溶液)
 記憶效應 (Memory effects)
- Elastic Recoil
-
Open Syphon Flow
Time-dependent effects (搖變性)
Thixotropy behavior
Anti-thixotropy behavior
A decrease (thixotropy) and increase (anti-thixotropy) of the apparent viscosity
with time at a constant rate of shear, followed by a gradual recovery when the
motion is stopped
The distinction between a thixotropic fluid and a shear thinning fluid:
 A thixotropic fluid displays a decrease in viscosity over time at a constant
shear rate.
 A shear thinning fluid displays decreasing viscosity with increasing shear
rate.
非 牛 頓 流 體 的 不 穏 定 性: 黏 彈 性 效 應
“The mountains flowed before the Lord”
[From Deborah’s Song, Biblical Book of Judges, verse 5:5],
quoted by Markus Reiner at the Fourth International Congress
on Rheology in 1963
De 
Elastic force
  tflow
Viscous force
or We = 
(Re  103 for all cases)
-
描述非牛頓流體行為之程度
 : 流體的特徵或 “鬆弛” 時間
tflow : 流動系統的特徵時間
 : 剪切速率
De  0
0.2

牛頓流體
(葡萄糖漿)
3
1
收
縮
流
道
非牛頓流體
(0.057% 聚丙烯醯胺/葡萄糖 溶液)
8

典型製程之流場強度範圍
Lubrication
High-speed coating
Rolling
Spraying
Injection molding
Pipe flow
Chewing
Extrusion
Sedimentation
105
103
101
101
 (s-1 )
103
105
107
Typical viscosity curve of a polyolefin- PP
homopolymer, melt flow rate (230 C/2.16 Kg) of 8
g/10 minat 230 C with indication of the shear rate regions
of different conversion techniques.
[Reproduced from M. Gahleitner, “Melt rheology
of polyolefins”, Prog. Polym. Sci., 26, 895 (2001).]
小振幅反覆式剪切流: 黏性與彈性檢定
Exp b: Small-Amplitude Oscillatory Shear Flow
The shear stress oscillates with frequency  ,
but is not in phase with either the shear strain
or shear rate
Shear Stress : yx   A() 0 sin(t   )
Shear rate:  yx (t )   0 cos t
Shear strain:  yx (t )   0 sin t
Oscillatory shear strain, shear rate, shear stress, and first normal stress difference in
small-amplitude oscillatory shear flow
It is customary to rewrite the above equations to display the in-phase and
out-of-phase parts of the shear stress
Storage modulus
 yx  G() 0 sin t  G() 0 cos t
Loss modulus
Storage and loss moduli, G’ and G”, as functions of frequency ω at a reference
temperature of T0=423 K for the low-density polyethylene melt shown in Fig. 3.3-1. The solid
curves are calculated from the generalized Maxwell model, Eqs. 5.2-13 through 15
 解決流變問題的途徑為何?
 傳統 vs. 現代(未來)
流體加工性質
macrorheology
基本流變性質
the De, Wi numbers
機械量測
microrheology
microscopy/spectroscopy
birefringence/dichroism
light/ neutron scatterings
particle tracking
光學量測
0
N
G
molecular orientation / alignment
particle size distribution/ diffusivity
micro/mesoscopic structures
本質方程式
分子動力理論
flow pattern
模流分析
Traditional route
Modern (predictive) route
monomer mobility, elastic modulus etc.
量子、原子、多尺度計算
物質特性
(化學合成)
Polarizer
Analyzer
PMT
VV and VH polarizations; θ = 30° to 150°
Multi-angle dynamic/static light scattering
Morphologies of MEH-PPV Solutions
The DLS autocorrelation function at any angles can be expressed as
translational
internal
ìï P ( x)
ü
¥ N
é
ù
ïï
P
(
x
)
2
2
ïí 0
0
é
ù
ê
ú
c
j
e
xp(
Dq
t
)
+
1
exp
(
Dq
+
2
t
)
t
dRh
å
i i
c
ê
ú
ò
ë
ûý
ê
ú
0
ï
ï
P
(
x
)
P
(
x
)
i
ë
û
ï
îï
þ
g (1) (q, t ) =
¥ N
ò å cij i dRh
Intensity Distribution
0
Mixed Dynamics
1.0
i
where
ìï (qRg ) 2 = (1.505qRh ) 2 coil
P( x) = (2 x ) [exp(- x) - 1 + x ], x = ïí
ïï (0.775qR ) 2
sphere
h
î
2
P0 ( x) = (p x ) exp(- x 6 ) éëêerf( x1/ 2 2)ù
ú
û
ïìï (1.505 Rh ) 2 ( kBT 6phs Rh ) coil
2
t c = Rg D = í
ïï (0.775 Rh ) 2 ( kBT 6phs Rh ) sphere
î
2
q  / q kBT
0.2
0.02
0.5
1.5
2.0
q<Rg>
2.5
3.0
102
103
Rh (nm)
0.8
0.6
0.4
0.2
100
101
102
103
Rh (nm)
0.04
3.5
0.5
Initial decay rate:
G(0)
q =
1.0
1.5
2.0
q<Rg>
2.5
3.0
104
0.0
0.06
0.02
1.0
101
1 mg/mL MEH-PPV/chloroform
3
0.04
(0)
(0)
3
q  / q kBT
0.3 mg/mL
1 mg/mL
3 mg/mL
Intensity Distribution
Rh
asymptote of the Zimm model
0.1 mg/mL
0.3 mg/mL
1 mg/mL
3 mg/mL
Internal
motion
0.4
1.0
MEH-PPV/chloroform
0.06
Center-of-mass
diffusion &
Internal motion
0.6
100
0.08
MEH-PPV/toluene
0.8
0.0
Suppressed Internal Motions of MEH-PPV Aggregates
0.08
1 mg/mL MEH-PPV/toluene
3.5
¶
ln g (1) (q, t )
¶t
t= 0
104
Flow Birefringence Measuring System
高分子溶液於流場下,會因流場大小的不同,造成高分子鏈被拉伸、旋轉與變形的程度不同,因
此我們可以藉由流變儀搭配光學雙折射系統,量測高分子鏈於不同流場下的變化情形。
y

 0
y

y
  small

  l arg e
x
x
x
何謂雙折射:
當光經過非均向介質,會分解為兩道不同路徑的折射光,其一恆遵守
折射率定律的正常光 (ordinary ray, o-ray ) ,其光的偏振方向,即電場振
動方向是垂直於光軸,另一道即是違反折射率定律的光為異常光
(extraordinary ray, e-ray ) ,其光的偏振方向是平行於光軸。當光於雙折射
材料中傳播時,因其具有兩個不同方向的主軸,光在兩軸中前進時的速度
分別為C1、C2,且C1>C2,因此我們將軸向1稱為快軸 (fast axis),軸向2
稱為慢軸 (slow axis)。所以光在兩分量間會有相位延遲現象產生,稱為
光波相位差,我們即可從相位差中推得折射率差。
 
2

D 
2 d

(n1  n2)
雙折射現象
d 為樣品厚度,  為光的波長。
流變雙折射:
高分子溶液的流動光學雙折射 (flow birefringnece) 有兩個來源:本
質的雙折射 (intrinsic birefringence) 和形狀的雙折射 (form birefringence)
。前者與高分子片段的非均向性極化有關,當鏈的構形發生改變時,鏈局
部的非均向性會變成巨觀的非均向性,因而造成本質的雙折射。後者與高
分子片段密度的非均向性相關,在稀薄溶液系統中較為重要。
光波之相位延遲
Phase modulated flow birefringence (PMFB)
分析與量測:
本實驗的光學雙折射主要基於Frattini和Fuller的相位調變系統來作量測 [Frattini and Fuller
J.Rheol. 28,61(1984);Fuller et al (1985)]。假設δ和χ分別代表樣品的相位延遲量和方位角,I
為接收器量測到的光強,Io為光彈調變器上的入射光強;δm代表光彈調變器的相位延遲量
,δm = A sin ωt,其中A為相對相位振福,ω為光彈調變器的共振頻率。
我們即可從探測器上得到光強 I  I0 1  cos 2 sin 2 1  cos  cos   cos 2 sin  sin  


m
m
2 
推算出:
cos 2 sin   1
sin 4(1  cos  )  2


212  22
1  2 
cos 4   tan  2   
1/ 2
2  14  22 
 1  

進而利用應力-光學定律進行檢測
C 
n tan 2
2
2
 
sin2   
2 sin 4 
2
n 

2 d
應力-光學定律目的主要為了將光學特性轉換成流變特性。高分子流體於流場下,因
流場產生的應力場使其具光學的非均向性,其主應力差值的張量與折射率差值的張量成一
比例關係,其比例即為應力-光學常數 C 。因此,我們可利用此比例關係來進行檢驗。
實驗裝置:
實際實驗裝置
聚苯乙烯溶液的雙折射量測結果:
示意圖
以分子量200萬之聚苯乙烯溶於 DOP
下,配置10wt% 的溶液進行量測,利用應
力-光學定律進行檢測。
實驗結果:
固態材料 (四分之一波片) 量測結果:
2M PS/DOP 10wt%
45
Experimental value
Theoretical value
40
100
80
60
1e-6
35
30
1e-7
25
20
1e-8
C
Orientation angle (
Retardation Angle
120
Theoretical value
Experimental value
15
1e-9
10
5
10
15
20
25
30
35
40
45
Quartar Wave Angle
5
5
10
15
20
25
30
35
40
45
1e-10
Angle (degree)
相位延遲量之理論與實驗值比較
方位角之理論與實驗值比較
Experimental C
5.9*10-9
4.5*10-9
1e-11
0
5
10
Shear Rate ( 1/s )
15
20
25
Small-Angle Light Scattering (SALS)
原理:
利用同調入射光於撞擊粒子後產生之散射光,其光程差於接收器產生的干涉
原理,經由適當的分析可推知溶質在溶液中的結構與動態情形。
裝置實體與示意圖:
實驗校正:
1
Measured diffraction
pattern
Airy function
I() / I(0)
0.1
0.01
0.001
0.0001
0
2
4
6
8
10
k a sin
Fig.1 Comparison of the predicted scattering pattern
(the airy function) of a 50 μm pinhole with the
experimentally measured one.
Fig. 2. Comparison of the form factor
predicted by the Mie theory with
the experimentally measured one.
應用:
SALS之量測角度範圍一般為1°≦θ≦10°,多半作為較大尺度結構解析之用途。其應用範圍可為
高分子材料之混合 (mixing)、分層(demixing)、相變化 (phase changes)、結構破壞 (structure
break-up)、與結構整合(structure build-up) 等相關研究。
Flow Wide-Angle Light Scattering
簡介
流動光散射與一般光散射最大不同,在於流場下可同時觀測流體的機械性質及
微觀結構變化,以更直接掌握高分子於加工過程中其微結構與分子型態的變化。
此外本系統亦可搭配光纖,利用其體積小、可彎曲的特點而有效增加量測系統的
靈活度。
原理
當所施加的剪切速率(shear rate)足夠壓制高分子鏈本身的轉動擴散
(rotational diffusion)運動,此時高分子鏈的構形將偏離其於靜止狀態下的特性,
並逐漸朝流動方向伸展與排向,同時造成高分子鏈大小與形狀(orientation)不同
程度的改變(deformation)。藉由測量方向角(orientation angle,χ)以及使用
Zimm-plot分析其迴旋半徑 Rg,可得知流場下高分子鏈的拉伸與排向的程度。
高分子在靜止狀態為捲曲體,
可視為球狀體,在施加流場後
高分子鏈開始變形,由球狀轉
為橢圓狀,並隨流動方向排向
與拉伸;藉由此系統可即時量測
高分子的排向情形與拉伸變形
的程度。左圖中 G為梯度方向
(gradient direction),V為流
體方(flow direction),χ 為方
向角(orientation angle)。
原理與實驗分析
如圖示:方向角χ為長軸與速度梯度
的夾角;θ為入射光與偵測器的夾角;
ψ’為速度梯度與散射向量的夾角。
[Ellen C. Lee, Macromolecules 1997, 30, 7313-7321]
如圖:最高點為
可得知 χ
[Lee et al., Macromolecules 1997, 30, 7313-7321]
'
max
,利用
  90   '
max
實驗裝置
本系統需依照流變儀之立體條件所設計,包含光學夾具、折射率匹配槽,
雙圓心旋轉桌板等皆需自行設計。
實驗校正
本系統需確定散射光強與散射體積之比例關係,因此選用甲苯做靜態光
散射校正。此外與一般光散射校正不同處為,需對自製桌板做校正及注意光纖光
強之接收。
toluene
40
intensity(kcounts/sec)
35
實驗裝置簡圖
30
25
20
15
10
20
40
60
80
100
degree
雙圓心旋轉台之操作原理為,選定入射光及偵測器
夾角θ後,即固定散射向量 q 的大小。此時轉動桌
板後散射向量 q 與梯度方向 G 的夾角ψ’即可任
意改變。
120
140
即時光學—流變系統
示意圖與功能
I. Particle Interactions II. Microstructures III. Molecular Anisotropy
Quartz couette cell
(Rheology)
2-D detection (θ and φ dirs.)
(Flow Light Scattering)
Phase-modulated light
(Flow Birefringence/Dichroism)
CCD camera
(Flow SALS)
in situ rheo-optical measuring system 實體圖
 多尺度分子計算 (Multiscale Computations)
 無可調參數 AND 絕對預測能力?
Parameter-Free Multiscale Simulations
(5) Dumbbell model &
BD simulation
(4) Bead-chain model &
BD simulation
(2) Monomer model &
CGMD/LD simulation
(3) Ellipsoid-chain model &
MC simulation
Shie, S. C.; Hua, C. C.; Chen, S. A., Macromol. Theor. Simul. 2007, 16, 111.
Shie, S. C.; Lee, C. K.; Hua, C. C.; Chen, S. A., Macromol. Theor. Simul. 2010, 19, 179.
Lee, C. K.; Hua, C. C.; Chen, S. A., J. Chem. Phys. 2010, 133, 064902.
Lee, C. K.; Hua, C. C., J. Chem. Phys. 2010, 132, 224904.
Lee, C. K.; Hua, C. C.; Chen, S. A., J. Phys. Chem. B 2009, 113, 15937.
(1) Atomistic model &
MD simulation
Lee, C. K.; Hua, C. C.; Chen, S. A., J. Phys. Chem. B 2008, 112, 11479.
Hua, C. C.; Chen, C. L.; Chang, C. W.; Lee, C. K.; Chen, S. A., J. Rheol. 2005, 49, 641.
Lee, C. K.; Hua, C. C.; Chen, S. A., Macromolecules, 2011, 44, 320–324
Lee, C. K.; Hua, C. C, Optoelectronics / Book 1,( InTech, ISBN 978-953-307-276-0)
Lee, C. K.; Hua, C. C.; Chen, S. A., (to be submitted).
Quantum chemistry
calculation
A Software Package under Development for Multiscale simulations
Analysis tools
Main program
Dumbbell model &
BD simulation
RDF
Bead-chain model &
BD simulation
Structure factor
Ellipsoid-chain model &
MC simulation
Intensity
Monomer model &
CGMD/LD simulation
Atomistic model &
MD simulation
Back-Mapping techniques
The mutiscale simulation package developed at Complex Fluids & Molecular Rheology Laboratory by C. K. Lee, S. C. Shie, and C. C. Hua,
in the Department of Chemical Engineering, National Chung Cheng University, Taiwan, R.O.C
Single-Chain Conformations of Conducting Conjugated Polymers
from Solution to the Quenching State: A Multiscale Simulation
PANI-EB
MEH-PPV
60
CF / T
CF / CB
Vacuum (V)
Rg (Angstrom)
55
Toluene (T)
Chloroform (CF)
50
45
40
35
30
CF 100%
CF 75 %
CF 66 %
CF 50 %
CF 33 %
CF 25 %
CF 0 %
Number Ratio
Chlorobenzene (CB) Mixed CF and T
Mixed CF and CB
11
6
3:1
2:1
1:1
1:2
1:3
Mixed CF and T
10
V
CF
T
CB
CF+T
CF+CB
9
1.5
8
7
1.0
RDFs
vdw only
5
4
3
2
1
6
0
5
3.0
3.5
4.0
4.5
5.0
4
0.5
5
10
15
20
25
30
3
Angstrom
2
2.0
Local Ratio (CF : CB) / Bulk Ratio
vdw + HB + π-π
Local Ratio (CF : T) / Bulk Ratio
2.0
1
3:1
2:1
1:1
1:2
1:3
Mixed CF and CB
0
0
1.5
1
2
3
4
5
6
7
8
9
distance (Angstrom)
1.0
0.5
5
10
15
20
Angstrom
25
30
10
11
12
13
14
Morphologies and Pair Interactions in Fullerene-Conjugated Oligomer
Hybrids Investigated by Atomistic Molecular Dynamics
Links between Molecular dynamics and Quantum chemical calculations
Force-field validation:
PPV backbone, dihedral angle
Energy level diagram for a donor–acceptor heterojunction: Structures
refined by semi-empirical (SE) and density functional theory (DFT)
16
MP2_6-31G
MD(original)
MD (fit)
14
Energy, kJ/mol
12
10
8
6
4
Compound
2
(eV)
0
-2
0
20
40
60
80
100
120
140
160
MEH-PPV
180
Angle, deg
C60
30
Energy, kJ/mol
25
PCBM
20
15
LUMO
HOMO
LUMO
HOMO
LUMO
HOMO
SE(PM3) DFT(B3LYP/3-21G*)
-0.754
-1.211
-8.549
-5.204
-2.886
-3.769
-9.480
-6.364
-2.807
-3.386
-9.165
-6.115
Excitation energies of a single chain MEH-PPV, calculated by ZINDO/S method
10
MP2_6-31G
MD(original)
MD (fit)
5
0
0
5
10
15
20
25
30
Angle, deg
60
Energy, kJ/mol
Chlorobenzene (CB)
MP2_6-31G
MD(original)
MD (fit)
50
40
30
20
10
Mixed Nonane and CB (1:1)
0
-25
-20
-15
-10
Angle, deg
-5
0
Quantum calculations were carried out using Gaussian 09
software package as provided by the NCHC
誰把流變做大了?