Transcript Document
GISAXSによる高分子薄膜構造解析 東京大学 大学院新領域創成科学研究科 基盤科学研究系 物質系専攻 横山英明 [email protected] 1 Outline • • • • Nanocellular thin films GISAXS What can we obtain using GISAXS? Distorted Wave Born Approximation (DWBA) • Quantitative analysis of nanocellular thin films using DWBA • Analysis of vertically and horizontally aligned nanosheets 2 [email protected] Foaming • Styrofoam – Macroscopic foam • Macrocells • Microfoaming with supercritical carbon dioxide – Microscopic foam • Microcells • Target: smaller foams(cells) – Nanofoaming • Nanocells 3 [email protected] Supercritical Carbon Dioxide Accessible critical point (Tc = 31.1 & Pc = 7.4 MPa) High diffusivity Solid Environmentally friendly Pressure Tunable density & solvent quality Pc SCF Liquid Gas Tc Temperature 4 [email protected] Conventional CO2 foaming Process Example: polystyrene Rapid depressurization Limited accessible size. > 1 mm 10m m *K. A. Arora, A. J. Lesser and T. J. McCarthy Macromolecules 1998, 31, 4614-4620 5 [email protected] Self-assembly of block copolymers Block Copolymers present a variety of domain structures of the order of 5 – 50 nm. M. W. Matsen and M. Scick , Phys. Rev. Lett . 72 , 2660 (1994). 6 [email protected] Block copolymer with fluorinated block Poly(styrene-blockperfluorooctylethyl methacrylate) (PS-PFMA) 5~50 nm Poly(methyl methacrylateblock-perfluorooctylethyl methacrylate) (PMMA-PFMA) PFMA is soluble in SC CO2 (CO2-philic) 7 [email protected] Pressure Back pressure regulator CO2 pump Solid CO2 Process Pc SCF Liquid High pressure vessel Gas Temperature /ºC ? Tc Temperature 60 ºC isobaric Depressurization 1h Time / h 8 Failed: Microcells appear 2 mm 0 ºC [email protected] Structures of nanofoams A B Nanoce ll PS PFMA domain domain (A) SAXS profiles of PS-PFMA processed in 7.5-30 MPa of CO2. Domain spacing increase with pressure. (B) A schematic picture of nanofoams and PS-PFMA chains. 9 [email protected] Nanoces in thin films 70 nm ScCO2 pressurize (110 nm?) ScCO2 depressurize 100 nm 10 [email protected] Exposing cell structures by RIE 200 nm Etching 11 0 nm 10 nm 15 nm 20 nm 13 nm 40 nm [email protected] Refractive Index 1.6 0.6 0.5 1.5 0.4 1.4 0.3 1.3 0.2 1.2 0.1 Volume Fraction of cells Reduction of refractive index = porosity 0.0 1.1 0 5 10 15 20 25 30 P / MPa Refractive index (density) is controlled by the processing pressure of CO2. [email protected] Quantitative measurement of nanocells • Prepare a single layer of nanocells (60 nm thick film) – 2-D hexagonal lattice – inter-cell scattering is restricted in the film plane – Foam factor of cells is 3D • Size • Structure of block copolymers around the voids 13 [email protected] Grazing incident small angle X-ray scattering (GISAXS) http://www.spring8.or.jp/wkg/BL40B2/instrument/lang-en/INS-0000001280/instrument_summary_view 14 [email protected] GISAXS Patterns qz qy 15 [email protected] Theory of GISAXS • Reflectivity – Fresnel law • Small Angle Scattering – Born Approximation – Fourier transform of model • GISAXS(DWBA) – Calculate 4 beam intensities using Fresnel law – Apply Born approximation 16 [email protected] Distorted Wave Born Approximation (DWBA)(1) Compute Reflectivity....... 17 [email protected] DWBA(2) Compute scattering....... Ti Tf Ti Rf Ri Ri 18 Tf Rf [email protected] Model Lattice Form factor of cells r3 r2 R1 r1 R2 F Paracrystal distortion qR 19 [email protected] GISAXS and DWBA incident angle: 0.15 degree incident angle: 0.225 degree 20 [email protected] Interference of reflected waves incident angle: 0.15 degree @ critical angle 21 incident angle: 0.225 degree @ critical angle [email protected] Model fitting r3 r2 R1 r1 F Sphere R2 SCS qR 22 [email protected] Self-assembly of block copolymers Block Copolymers present a variety of domain structures of the order of 5 – 50 nm. M. W. Matsen and M. Scick , Phys. Rev. Lett . 72 , 2660 (1994). 23 [email protected] As cast morphologies TFT Top View HFB Top View • Trifluorotoluene (TFT) – Non-selective – Cylinders oriented in the surface plane HFB Side View 24 • Hexafluorobenzene (HFB) – Selective for PFMA – Fat cylinders of PS oriented vertically ? [email protected] GISAXS of as-cast morphologies 25 TFT GISAXS • Trifluorotoluene (TFT) – Non-selective – Cylinders oriented in the surface plane HFB GISAXS • Hexafluorobenzene (HFB) – Selective for PFMA – Fat cylinders of PS oriented vertically ? [email protected] CO2 process As-cast films CO2 process Templated porous films? [email protected] “Porous” structure (HFB) Standing nanosheets 200 nm 27 [email protected] GISAXS of standing nanosheets 1.4 10 1.2 10 5 4 1.0 0.8 0.6 Intensity, a.u. qz/nm -1 0.20 10 10 3 2 0.15 0.4 10 1 0.2 0.0 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 qy/nm -1 28 0.10 10 0 -1.5 -1.0 -0.5 0.0 q / nm 0.5 1.0 1.5 -1 y [email protected] Standing nanosheets Top view 200 nm • Capillary condensation • Constraint by substrate • 22.4 nm and 20.3 nm [email protected] “Porous” structure (TFT) stacking nanosheets 200 nm 30 [email protected] Out of plane scattering 1 .4 a= 0 .1 5 a RT 3 = 0 .2 0 q z / n m -1 TT 3 RT 2 TT 2 RT 1 TT 1 Y oneda 0 - 1 .2 0 qy / nm 31 1 .2 - 1 .2 -1 0 1 .2 qy / nm -1 [email protected] Decomposing to two components 1,2,3 8 10 1 1' 7 10 2 Intensity, a.u. 2' 6 10 1 3 1' 5 2 10 3' 2' 4 3 10 3 10 1',2',3' 3' a = 0.15 a = 0.20 2 10 0.0 0.5 1.0 1.5 -1 qz / nm • Stacking nanosheets • 20.9±0.4 nm from 2p/Dqz of two sets of peaks [email protected] Summary • GISAXS reveals cellular structures quantitatively • GISAXS is useful method for the analysis of thin films on substrate • DWBA simulation is essential for quantitative analysis 33 [email protected] Acknowledgment • C. Dutriez, L. Li and R. Zhang (AIST) • K. Sugiyama (TIT) • S. Sasaki, H. Masunaga and M. Takata (JASRI) • H. Okuda (Kyoto U.) 34 [email protected] In plane scattering 107 10 % 34 % 106 I , a .u . 105 104 103 102 - 1 .5 -1 .0 - 0 .5 0 .0 q / n m 0 .5 1 .0 1 .5 -1 y 35 [email protected]