INDIAN ENERGY SCENARIO - Nuclear Safety and Security

Download Report

Transcript INDIAN ENERGY SCENARIO - Nuclear Safety and Security

Indian strategy for management of spent fuel from Nuclear Power Reactors S.Basu, India

Energy scenario in India

• At the present growth rate, Indian economy will double every eight years • Growing population • Reaching well above per capita world average consumption

• • • Nuclear energy is to meet 25% to 50% of the total energy requirement Nuclear capacity will reach 20 Gwe and more by 2020 200 Gwe and above generation capacity is targeted by the middle of the century

Large nuclear energy requirement

Limited Uranium resources

Spent Fuel is a resource for India

• All spent fuel will be reprocessed • Storage of spent fuel is an interim activity

Indian three stage programme envisages

I Stage : Pressurized Heavy water reactor with Natural Uranium fuel

Interim storage in spent fuel storage pools and subsequent reprocessing

II Stage : U-Pu based Fast Breeder Reactors based on MOX/metallic fuel

Interim storage of spent fuel in reactor/water pool & Reprocessing in fast reactor fuel cycle facilities.

III Stage: Th-Pu and Th-U233 (MOX) based reactors

Interim storage of above fuel and subsequent reprocessing of Th-Pu-U233 or Th-U233 fuel

Fast reactor fuel reprocessing

• Reprocessing of short cooled fuel • Aqueous reprocessing of oxide fuel • Aqueous/Pyro chemical reprocessing for metallic fuel

Fast reactor spent fuel storage

• Initial cooling in reactor • Sodium removal • Interim Storage in water pools

Thorium fuel reprocessing

• Three component reprocessing, Th – Pu –U233 • Two component reprocessing, Th – U233 • U232 related issues • Thorium storage

Recent nuclear agreements opened up possibility for

LWRs of various types based on enriched Uranium Interim storage and subsequent reprocessing of oxide spent fuel ( High burnup fuel)

Pressurized Heavy Water Fuel using Recycled Uranium (oxide)

Uranium in spent fuel of LWRs is slightly enriched. Suitable for use in PHWRs.

Interim storage and Reprocessing of Recycled Uranium based Spent Fuel

Other impact of nuclear agreement is availability of Natural Uranium from foreign sources

PHWRs based on natural Uranium obtained from foreign sources Interim storage and reprocessing of spent fuel

Spent fuel storage pool

• • • • Intermediate storage Adequate cooling period Water cooled Buffer for the period between discharge from reactor and reprocessing

Storage period for spent fuel

• • • Longer storage of spent fuel simplifies the reprocessing and waste management systems Shorter storage period results in earlier availability of Pu for power generation Early reprocessing would require storage of high level waste for longer period before vitrification

Reprocessing requirements

• • • • • • • • Natural Uranium (Indian) - PHWR Natural Uranium (Foreign) - PHWR Enriched Uranium- LWRs of four types Recycled Uranium(LWR fuel repro.) - PHWR Fast reactor MOX fuel Fast reactor metallic fuel Th – Pu – U233 fuel Th – U233 fuel

Waste management

High level waste is vitrified and stored in interim storage facility Cesium and Strontium recovery is planned

Spent fuel Transportation

All transportation will be through land routes using transfer casks and trailers meeting all regulatory requirements For Coastal sites Reprocessing facilities are co-located with power reactors . This will minimize fuel transportation in public domain

Larger size Integrated Nuclear Recycle Plant

* So far smaller size reprocessing plants were co-located with waste management and fuel fabrication facilities * Future plants will be based on integrated facility for reprocessing and waste management. Fuel fabrication facility will also be integrated in most cases

Challenges : construction and operation of larger size plants

• Extension of available technology; for low and high burn up fuel • Use of newer equipment • Cost reduction

Reprocessing and fabrication of metallic fuel

• • • • Pyro – chemical technique for reprocessing Electro reduction technique for conversion from oxide to metal Metallic fuel fabrication Commercial scale operation

Present activities in the back end

• • • • Operation of small size plants Construction and commissioning of two more reprocessing plants and associated facilities (augmentation activities) Design and construction two large size integrated plants, one for PHWR and the other for fast reactor spent fuel Plant designs aim at significant reduction in discharges & improvement in safety & security

Safety Guides

• Comprehensive safety codes and guides are required for the back end of fuel cycle • Should cover reprocessing ,waste management and repository

Conclusion

• • • Uranium Resource constraint ; Countries aiming large and sustained nuclear generation has to opt for closed fuel cycle Waste volume; Significant reduction in waste volume is possible only through closed fuel cycle route Indian nuclear recycle programme is poised for major expansion, matching the enhanced power generation plans