Transcript 作業解答
CHAPTER 5 Problems and Solutions 不要用看的,要動手! Problem 1 a. Determine the currents I and IL for the network in Fig.5.77. b. Find the power delivered to the resistor R2. ZR1 ZC ZR2 ZR2與ZL串聯成 Z’ ZL ZC與Z’並聯成 Z” Z' ZR 2 ZL 3k j3k 4.243k45 Z" Z' // ZC ... 5.878k 11.31 5.764k j1.152k j3k ZT ZR1 Z" 7.764k j1.152k 7.849k8.44 ZR1 ZC ZR2 ZR2與ZL串聯成 Z’ ZL ZC與Z’並聯成 Z” I( j) E( j) 1200 15.29mA8.44 ZT 7.849k 8.44 ZC 5k 90 I L ( j) I( j) 15.29mA8.44 ZC Z' j5k 3k j3k 21.18mA 47.87 PR 2 I L R 2 ... 1.346W 2 延伸問題 a. E與I的相位差? b.從電壓源E往右看,由R1…XL所組成電路,是那一種特徵 的電路?電感特徵?電容特徵? Problem 2 a. Determine the vo1tage Vs for the network in Fig.5.78. b. Find the power delivered to R2. ZL ZR1 ZR2 Z' ZR 2 // ZC ... 5k j5k 7.701k 45 Z" Z'ZL 5k j5k 7.701k45 ZT Z R1 // Z " ... 4.472k25.565 Vs ( j) I( j) ZT ... 89.44V26.565 ZC Z" Z'ZL ZL Z' ZR 2 // ZC ZR1 ZC ZR2 Z' VR 2 VS ( j) ... 89.44V 63.44 Z' ZL 2 VR 2 PR 2 ... 0.8W R2 Z R1 另一條路… I ... R2 I Z R1 Z" PR 2 I R 2 R 2 ... 2 延伸問題 求vs(t) ? Problem 7 Determine the current I in Fig. 5.79 by first converting both voltage sources to current sources and then combining the parallel current sources. I1 ( j) E1 ( j) 10mA0 Z R1 I 2 ( j) E2 ( j) 40V0 8mA90 ZC 5k 90 IT I1 ( j) I2 ( j) 10mA j8mA 12.81mA38.66 將ZR1與ZC並聯起來Z’ Z' ZR1 // ZC ... 1.857k 21.8 Z' ZR1 // ZC ... 1.857k 21.8 利用Current divider rule Z' I( j) IT ( j) ... 6.37mA 45.63 Z' ZL Problem 8 Convert the current source in Fig.5.80 to a voltage source and find the current I by combining the series voltage sources and using Ohm's law. 2kΩ E1 I ZC 2mA 0 2k 90 4V 90 E1 ( j) E( j) I ... 2.41mA 48.37 ZC Z R 2 Z L Problem 9 a. Determine the current through the inductor of Fig. 5.79 using mesh analysis. b. Using the results for part (a) find the voltage across the inductor. Z1=2kΩ Z3=5kΩ∠-90° I1 I2 Z2=4kΩ∠90° Mesh 1 E1 I1Z1 (I1 I2 )Z2 0 Mesh 2 ( I 2 I1 )Z2 I 2Z3 E2 0 I1 ( Z1 Z2 ) I 2 Z2 E1 I1Z2 I 2 ( Z2 Z3 ) E 2 E1 Z2 E 2 ( Z 2 Z3 ) I1 ... Z1 Z2 Z2 Z2 ( Z 2 Z3 ) Z1 Z2 E1 Z2 E2 I2 ... Z1 Z2 Z2 Z2 ( Z 2 Z3 ) I I1 I2 ... 6.57mA 45.63 跨越電感的電壓降 VL I Z2 ... 25.48V44.37 Problem 10 Determine the current I in Fig.5.81 using mesh analysis. I1 I2 Z1=10Ω∠0° Z2=20Ω∠0° Z3=30Ω∠90° Z4=50Ω∠-90° Mesh 1 Mesh 2 E I1Z1 (I1 I2 )Z2 0 (I 2 I1 )Z2 I 2 (Z3 Z4 ) 0 I1 ( Z1 Z2 ) I 2 Z2 E I1Z2 I 2 ( Z2 Z3 Z4 ) 0 I1 I2 Z1=10Ω∠0° Z2=20Ω∠0° Z3=30Ω∠90° Z4=50Ω∠-90° I2 Z1 Z2 Z2 Z1 Z2 Z2 E 0 ... 0.632A71.565 Z2 ( Z 2 Z3 Z 4 ) Problem 11 Determine the current through resistor R2 in Fig 5.86. Z1 1k0 I2 Z 2 3k0 Z 3 6 k0 I1 Z 4 6 k0 Z5 6k90 I3 Z 6 6k90 Mesh 1 E I1Z1 (I1 I 2 )Z2 (I1 I3 )Z4 0 Mesh 2 (I 2 I1 )Z2 I 2 Z5 (I 2 I3 )Z3 0 Mesh 3 (I3 I1 )Z4 (I3 I 2 )Z3 I3 Z6 0 I1 ( Z1 Z 2 Z 4 ) I 2 Z 2 I3 Z 4 E I1Z 2 I 2 ( Z 2 Z3 Z5 ) I3 Z5 0 I1Z 4 I 2 Z3 I3 ( Z3 Z 4 Z6 ) 0 解出 I1 15.25mA 32.15 I 2 9mA 92.16 I R 2 I1 I 2 13.2mA 4.05 Problem 12 Determine the voltage across the resistor R2 in Fig 5.86. Z3 Z1 Z2 Z6 Z5 Z4 Problem 13 a. Determine the nodal voltages for the network in Fig.5.82. b. Calculate the current through each impedance using the results for part (a). V2 V1 Z1 2k0 Z2 10k0 NODE 1 V1 V1 V2 I1 I 2 0 Z1 Z2 NODE 2 V1 V2 V2 I2 I3 0 Z2 Z3 Z3 4k 90 1 1 1 V1 V2 I1 I 2 Z1 Z2 Z2 1 1 1 V1 V2 I 2 I 3 Z2 Z2 Z3 I1 I 2 1 Z2 1 1 I 2 I 3 Z1 Z2 V1 1 1 1 Z2 Z1 Z2 1 1 1 Z2 Z1 Z2 13.133V72.58 1 1 I1 I 2 Z1 Z2 1 I2 I3 Z2 V2 1 1 1 Z1 Z2 Z2 1 1 1 Z2 Z1 Z2 36.72V 172.47 Problem 14 Find the Thévenin equivalent circuit for the network to the left of the load ZL in Fig. 5.83. ZR1 6k0 ZR 2 1k0 ZC 8k 90 ZL 6k90 Z' ZR1 ZL 6k j6k 8.485k45 Z" Z' // ZC ... 10.732k 26.565 ZTH、ETH ZTH Z " Z R 2 ... 10.599k j 4.799k R jX C ETH ZC E 151.78V 71.565 Z R 1 Z L ZC Problem 15 a. Determine ZL for maximum power to ZL in Fig. 5.83. b. Calculate the maximum power that can be delivered to ZL. R + XL ZTH Z"ZR1 ... 10.599k j4.799k R jXC For max. power ZL 10.599k j4.799k 2 E TH PMAX ... 544mW 4R TH Problem 16 a. Find the Thévenin equivalent circuit for the network to the left of XC= 50Ω in Fig. 5.81. b. If XC in Fig. 5.81 is replaced by a load ZL, determine R and X for the load so that the load will receive maximum power. LOAD ZTH ZR1 // ZR 2 ZL ... 6.667 j30 ETH ZR 2 E 13.333V0 Z R1 Z R 2 For max. power ZL 6.667 j30 由電阻與電容串聯而成, 電容的電抗(reactance)30Ω Problem 17 a. Find the Thévenin equivalent circuit for the network to the left of ZL in Fig. 5.84. b. Determine ZL for maximum power to ZL. c. Calculate the maximum power to ZL. ZTH ZR ZL1 ZL2 // ZC ... 4.17 j9.17 10.07 65.56 ETH ZC E 17.7V 135 ZR ZL1 ZL 2 ZC For max. power ZL 4.17 j9.17 由電阻與電感串聯而成, 電感的電抗(reactance)9.17Ω Problem 23 For the network in Fig. 5.88, determine: a. The current through each branch using Ohm's law. b. The total power dissipated (real power). c. The net reactive power. d. The total apparent power e. The network power factor. E 1200 30mA0 a. I R Z R 4k0 E 1200 IL 12mA 90 Z L 10k90 E 1200 IC 15mA90 ZC 8k 90 b. P I 2 R R 3.6W c. Q L I 2 L X L 1.44VAR QC I 2 C X C 1.8VAR QT Q L QC 0.36VAR d. Total apparent power ST P 2 QT 2 3.62 VA P 0.994 e. Power factor FP ST Leading Problem 24 For the system in Fig. 5.89, determine: a. PT b. QT c. ST d. I e. FP a. Total power PT 300W 100W 600W 1,000W b. Net reactive power QT 200VAR 700VAR 400VAR 100VAR Lagging 電感性較強 c. Total apparent power ST PT QT 1,005 VA 2 2 d. ST I 8.375 A E e. Power factor PT FP 0.995 ST cos1 0.995 5.732 Lagging