Transcript 作業解答
CHAPTER 5
Problems and Solutions
不要用看的,要動手!
Problem 1
a. Determine the currents I and IL for the network in Fig.5.77.
b. Find the power delivered to the resistor R2.
ZR1
ZC
ZR2
ZR2與ZL串聯成 Z’
ZL
ZC與Z’並聯成 Z”
Z' ZR 2 ZL 3k j3k 4.243k45
Z" Z' // ZC ...
5.878k 11.31 5.764k j1.152k j3k
ZT ZR1 Z" 7.764k j1.152k 7.849k8.44
ZR1
ZC
ZR2
ZR2與ZL串聯成 Z’
ZL
ZC與Z’並聯成 Z”
I( j)
E( j)
1200
15.29mA8.44
ZT
7.849k 8.44
ZC
5k 90
I L ( j)
I( j)
15.29mA8.44
ZC Z'
j5k 3k j3k
21.18mA 47.87
PR 2 I L R 2 ... 1.346W
2
延伸問題
a. E與I的相位差?
b.從電壓源E往右看,由R1…XL所組成電路,是那一種特徵
的電路?電感特徵?電容特徵?
Problem 2
a. Determine the vo1tage Vs for the network in Fig.5.78.
b. Find the power delivered to R2.
ZL
ZR1
ZR2
Z' ZR 2 // ZC ... 5k j5k 7.701k 45
Z" Z'ZL 5k j5k 7.701k45
ZT Z R1 // Z " ... 4.472k25.565
Vs ( j) I( j) ZT ... 89.44V26.565
ZC
Z" Z'ZL
ZL
Z' ZR 2 // ZC
ZR1
ZC
ZR2
Z'
VR 2 VS ( j)
... 89.44V 63.44
Z' ZL
2
VR 2
PR 2
... 0.8W
R2
Z R1
另一條路… I
...
R2 I
Z R1 Z"
PR 2 I R 2 R 2 ...
2
延伸問題
求vs(t) ?
Problem 7
Determine the current I in Fig. 5.79 by first converting both
voltage sources to current sources and then combining the
parallel current sources.
I1 ( j)
E1 ( j)
10mA0
Z R1
I 2 ( j)
E2 ( j)
40V0
8mA90
ZC
5k 90
IT I1 ( j) I2 ( j) 10mA j8mA 12.81mA38.66
將ZR1與ZC並聯起來Z’
Z' ZR1 // ZC ... 1.857k 21.8
Z' ZR1 // ZC ... 1.857k 21.8
利用Current divider rule
Z'
I( j) IT ( j)
... 6.37mA 45.63
Z' ZL
Problem 8
Convert the current source in Fig.5.80 to a voltage source and
find the current I by combining the series voltage sources and
using Ohm's law.
2kΩ
E1 I ZC 2mA 0 2k 90
4V 90
E1 ( j) E( j)
I
... 2.41mA 48.37
ZC Z R 2 Z L
Problem 9
a. Determine the current through the inductor of Fig. 5.79 using
mesh analysis.
b. Using the results for part (a) find the voltage across the
inductor.
Z1=2kΩ
Z3=5kΩ∠-90°
I1
I2
Z2=4kΩ∠90°
Mesh 1
E1 I1Z1 (I1 I2 )Z2 0
Mesh 2
( I 2 I1 )Z2 I 2Z3 E2 0
I1 ( Z1 Z2 ) I 2 Z2 E1
I1Z2 I 2 ( Z2 Z3 ) E 2
E1
Z2
E 2 ( Z 2 Z3 )
I1
...
Z1 Z2
Z2
Z2
( Z 2 Z3 )
Z1 Z2 E1
Z2
E2
I2
...
Z1 Z2
Z2
Z2
( Z 2 Z3 )
I I1 I2 ... 6.57mA 45.63
跨越電感的電壓降
VL I Z2 ... 25.48V44.37
Problem 10
Determine the current I in Fig.5.81 using mesh analysis.
I1
I2
Z1=10Ω∠0°
Z2=20Ω∠0°
Z3=30Ω∠90°
Z4=50Ω∠-90°
Mesh 1
Mesh 2
E I1Z1 (I1 I2 )Z2 0
(I 2 I1 )Z2 I 2 (Z3 Z4 ) 0
I1 ( Z1 Z2 ) I 2 Z2 E
I1Z2 I 2 ( Z2 Z3 Z4 ) 0
I1
I2
Z1=10Ω∠0°
Z2=20Ω∠0°
Z3=30Ω∠90°
Z4=50Ω∠-90°
I2
Z1 Z2
Z2
Z1 Z2
Z2
E
0
... 0.632A71.565
Z2
( Z 2 Z3 Z 4 )
Problem 11
Determine the current through resistor R2 in Fig 5.86.
Z1 1k0
I2
Z 2 3k0
Z 3 6 k0
I1
Z 4 6 k0
Z5 6k90
I3
Z 6 6k90
Mesh 1
E I1Z1 (I1 I 2 )Z2 (I1 I3 )Z4 0
Mesh 2
(I 2 I1 )Z2 I 2 Z5 (I 2 I3 )Z3 0
Mesh 3
(I3 I1 )Z4 (I3 I 2 )Z3 I3 Z6 0
I1 ( Z1 Z 2 Z 4 ) I 2 Z 2 I3 Z 4 E
I1Z 2 I 2 ( Z 2 Z3 Z5 ) I3 Z5 0
I1Z 4 I 2 Z3 I3 ( Z3 Z 4 Z6 ) 0
解出
I1 15.25mA 32.15
I 2 9mA 92.16
I R 2 I1 I 2 13.2mA 4.05
Problem 12
Determine the voltage across the resistor R2 in Fig 5.86.
Z3
Z1
Z2
Z6
Z5
Z4
Problem 13
a. Determine the nodal voltages for the network in Fig.5.82.
b. Calculate the current through each impedance using the results
for part (a).
V2
V1
Z1 2k0
Z2 10k0
NODE 1
V1 V1 V2
I1 I 2
0
Z1
Z2
NODE 2
V1 V2
V2
I2 I3
0
Z2
Z3
Z3 4k 90
1
1
1
V1 V2 I1 I 2
Z1 Z2
Z2
1
1
1
V1 V2 I 2 I 3
Z2
Z2 Z3
I1 I 2
1
Z2
1
1
I 2 I 3
Z1 Z2
V1
1
1
1
Z2
Z1 Z2
1
1
1
Z2
Z1 Z2
13.133V72.58
1
1
I1 I 2
Z1 Z2
1
I2 I3
Z2
V2
1
1
1
Z1 Z2
Z2
1
1
1
Z2
Z1 Z2
36.72V 172.47
Problem 14
Find the Thévenin equivalent circuit for the network to the left of
the load ZL in Fig. 5.83.
ZR1 6k0
ZR 2 1k0
ZC 8k 90
ZL 6k90
Z' ZR1 ZL 6k j6k 8.485k45
Z" Z' // ZC ... 10.732k 26.565
ZTH、ETH
ZTH Z " Z R 2 ... 10.599k j 4.799k
R jX C
ETH
ZC
E
151.78V 71.565
Z R 1 Z L ZC
Problem 15
a. Determine ZL for maximum power to ZL in Fig. 5.83.
b. Calculate the maximum power that can be delivered to ZL.
R + XL
ZTH Z"ZR1 ... 10.599k j4.799k
R jXC
For max. power
ZL 10.599k j4.799k
2
E TH
PMAX
... 544mW
4R TH
Problem 16
a. Find the Thévenin equivalent circuit for the network to the left
of XC= 50Ω in Fig. 5.81.
b. If XC in Fig. 5.81 is replaced by a load ZL, determine R and X
for the load so that the load will receive maximum power.
LOAD
ZTH ZR1 // ZR 2 ZL ... 6.667 j30
ETH
ZR 2
E
13.333V0
Z R1 Z R 2
For max. power
ZL 6.667 j30
由電阻與電容串聯而成,
電容的電抗(reactance)30Ω
Problem 17
a. Find the Thévenin equivalent circuit for the network to the left
of ZL in Fig. 5.84.
b. Determine ZL for maximum power to ZL.
c. Calculate the maximum power to ZL.
ZTH ZR ZL1 ZL2 // ZC ...
4.17 j9.17 10.07 65.56
ETH
ZC
E
17.7V 135
ZR ZL1 ZL 2 ZC
For max. power
ZL 4.17 j9.17
由電阻與電感串聯而成,
電感的電抗(reactance)9.17Ω
Problem 23 For the network in Fig. 5.88, determine:
a. The current through each branch using Ohm's law.
b. The total power dissipated (real power).
c. The net reactive power.
d. The total apparent power
e. The network power factor.
E
1200
30mA0
a. I R
Z R 4k0
E
1200
IL
12mA 90
Z L 10k90
E
1200
IC
15mA90
ZC 8k 90
b. P I 2 R R 3.6W
c. Q L I 2 L X L 1.44VAR
QC I 2 C X C 1.8VAR
QT Q L QC 0.36VAR
d. Total apparent power ST P 2 QT 2 3.62 VA
P
0.994
e. Power factor FP
ST
Leading
Problem 24 For the system in Fig. 5.89, determine:
a. PT b. QT c. ST d. I e. FP
a. Total power PT 300W 100W 600W 1,000W
b. Net reactive power
QT 200VAR 700VAR 400VAR 100VAR
Lagging 電感性較強
c. Total apparent power
ST PT QT 1,005 VA
2
2
d.
ST
I
8.375 A
E
e. Power factor
PT
FP
0.995
ST
cos1 0.995 5.732 Lagging