Transcript Chapter 6

CMOS Analog Design Using
All-Region MOSFET Modeling
Chapter 6
Current Sources and
Voltage References
CMOS Analog Design Using All-Region MOSFET
Modeling
1
Simple MOS current source
IREF is, in general, very
sensitive to VDD, R,
and M
Low current requires
high R (large silicon
area)
(a) A simple MOS current source (b) Current x voltage
characteristic of the input transistor and load line.
RI REF



I REF
I REF
 VDD  VT 0  nt  1 
 2  ln  1 
 1 
I
I
S
S

 

CMOS Analog Design Using All-Region MOSFET
Modeling
2
Widlar current source
Low current can be generated
without large resistances
N is also a design parameter (more
important than RS)
Input current IREF often high – not
convenient for low-power design
CMOS Analog Design Using All-Region MOSFET
Modeling
3
Self-biased current source - 1
weak inversion
I OUT 
TC WI 
t
RS
ln K
1 1 dRS

T RS dT
strong inversion
I OUT
RS I OUT
t



I OUT
1 

 1
I
I
I
S1

  1  OUT  1  OUT  ln 



I S1
KI S 1
I

 1  OUT  1  
KI S 1


 
t 2 
1
 2 1 
RS I S 1 
K
2

 


2
1 
1



RS2 nCox n W / L 1 
K 
TC SI  
CMOS Analog Design Using All-Region MOSFET
Modeling
1 dnn 2 dRS

nn dT
RS dT
4
2
Self-biased current source - 2
I2
I2=I1
Point A
Current mirror
M3-M4
Current mirror
M1-M2-RS
Point B
I1
Start-up circuit:
ensures that A is the solution;
“wakes-up” current source
ASAP after power-up
CMOS Analog Design Using All-Region MOSFET
Modeling
5
MOSFET-only self-biased current source




 1  i  1 
if 1
VS 2 
f1
   ln K
 1 if 1  1
 ln 


t 
K
if 1
 1 

 1
K



VS 2
t
 , 1 if 7
I D6  I D5 
 1  i f 7 1 

 1  ir 7  ln 
 1  ir 7  1 


S5
I D1
S4
if 7  if 6 
I D6
IS 6
I D7  I S 7 (i f 7  ir 7 )  I D1  I S1i f 1
if 7 
I OUT  nCox n
t2
2
S7  2 J  1  2 J ( J  1) 
S5 S1
if 1
S 4 S6
 S S 
 S S S S
ir 7  1  4 6  i f 7  1  4 6  5 1 i f 1
 S5 S 7 
 S5 S7  S4 S6
J=S5S7/S4S6
CMOS Analog Design Using All-Region MOSFET
Modeling
6
Bandgap voltage reference – 1
VCC
VBE
Choose M such that
~ -2 mV/oC
dVout
dT
I1
T

t
T0
dVBE
dT
M
T0
k
0
q
Vout  VBE  M t
+
VBE
-
t generator

t
M
Mt
The output voltage for
zero temperature
coefficient is close to the
“extrapolated” band-gap
voltage of Si (1.206 V)
k/q=+ 86.19
V/oC
T
CMOS Analog Design Using All-Region MOSFET
Modeling
7
Bandgap voltage reference – 2
VBE  M
kT
 constant
q
Mt
dVout
dT

T0
dVBE
dT
M
T0
k
0
q
VBE
T
CMOS Analog Design Using All-Region MOSFET
Modeling
8
Bandgap voltage reference – 3
 VBE 
I1  I C  I sat exp 


 t 
I sat
qAni2 nt

GB
  EG 
n  DT exp 

 kT 
2
i
3
EG: 1.206 eV, silicon bandgap extrapolated to 0 K.
Assume the average mobility of electrons in the base region is
Assume that
GB  
WB
0
n  n 0 T / T0 
N Adx
m
I1  I C 0 T / T0 

The temperature coefficient of the voltage reference is
d VBE  M t  VBE k 
E


 (4  m   )  G  M 
dT
T
q
kT
M 
=0 at T=T0
VOUT 

VBE 0
E
 G  (4  m   )
 kT0 / q  kT0
EG kT
T

(4  m   )(1  ln 0 ) 
q
q
T
VOUT
T T0
kT
 T  T0 

(4  m   ) 

2q
 T 
CMOS Analog Design Using All-Region MOSFET
Modeling
2
9
CMOS-compatible bandgap reference - 1
Both M1 and M2 in weak inversion
kT I1 W / L 2
VO  VBE  V1  V2  VBE  n ln
q
I 2 W / L 1
Problem: n=n(T, VG)
Minimum supply: VBE+V1+VDSsat (current
source)
CMOS Analog Design Using All-Region MOSFET
Modeling
10
CMOS-compatible bandgap reference - 2
 R2  S2   kT S3 S2
VO  1  1   
ln
R
S
q
S1 S4
1 
4 

PTAT voltage generator. Transistors M1
and M3 are biased in weak inversion.
CMOS Analog Design Using All-Region MOSFET
Modeling
11
CMOS-compatible bandgap reference - 3
VCC
VCC
I1
I2
+
+
VBE1 VBE2
-
VBE1  t ln
I1
I
 t ln 1
I S1
J S A1
VBE 2  t ln
I2
I
 t ln 2
IS 2
J S A2
VBE  VBE1  VBE 2
I A
 t ln 1 2
I 2 A1
VR1  VE 2  VE1 
kT
ln N
q


 R  kT
VREF   VBE 2  1  2 
ln N 
R1  q



CMOS Analog Design Using All-Region MOSFET
Modeling
12
CMOS-compatible bandgap reference - 4
Problems:
 Op amp offset voltage
 Poor performance of
substrate pnp transistors ??
VREF  VEB 2 
R2 kT
ln N
R1 q
CMOS Analog Design Using All-Region MOSFET
Modeling
13
Exercise
Vertical (substrate)
pnp transistors
Band-gap reference in n-well CMOS
Exercise: Show that
VOUT
Source of error
 R2 
 VEB 2  1    VEB  VOS 
 R3 
CMOS Analog Design Using All-Region MOSFET
Modeling
14
CMOS-compatible bandgap reference - 5
VFCM
VFCM: voltage following
current mirror
VREF
R2 kT
 VEB 3 
ln N
R1 q
CMOS Analog Design Using All-Region MOSFET
Modeling
15
CMOS-compatible bandgap reference - 6
p-well CMOS process
Eric A. Vittoz, MOS Transistors Operated in the
Lateral Bipolar Mode and Their Application in
CMOS Technology, IEEE JSSC, Vol. 18, no. 3,
pp. 273-279, June 1983
CMOS Analog Design Using All-Region MOSFET
Modeling
16
CMOS bandgap reference with sub-1-V
operation
VDD
M2
M1
I1
I3
I2
+
R2
M3
I1a
R1
-
VREF
I2a
R2
R3
I2b
I1b
N
Q1
1
I1=I2=I3
Q2
CMOS Analog Design Using All-Region MOSFET
Modeling
17
Design of a SBCS – 1
SELF-CASCODE MOSFET (SCM)
I S 2i f 2  NI x
Sat.
I 2  NI x
i f 2  ir1
I S 1 (i f 1  i f 2 )  ( N  1) I x
 S 
1 
i f 1  1  2  1    i f 2   i f 2
S1 
N 

Applying UICM to both M1 & M2
Triode
VX
t
VX
t
 1 i f 2  1 i f 2
 1 
NI X
NI X
 1
S 2 I SH
S 2 I SH
CMOS Analog Design Using All-Region MOSFET
Modeling
 1  i f 2 1 

 ln 
 1  i f 2 1 




NI X
1



1


S
I
2
SH

 ln 


NI X
 1 
 1 
S
I
2 SH


18
Design of a SBCS – 2
VX / t
IX
S2  0.01
S1  0.01
IX
2IX
SCM1,2
 3
S  0.01
SCM3,4
  18.7
S  1.13
IX
I X / I SH
S4  1.13
S3  10
IX
2IX
VX
t
 1 
IX
I
 1 X
SI SH
SI SH
CMOS Analog Design Using All-Region MOSFET
Modeling


IX
1 
 1 
SI SH

 ln 


IX
1


1


SI
SH


19
Design of a SBCS – 3
VOLTAGE FOLLOWING (NMOS) CURRENT MIRROR (PMOS)1
Vref  VS 9
t
 1  JKi f 8  1  i f 8
 1  JKi f 8  1 

 ln 
 1  i f 8 1 


When both M8 & M9 operate in WI:
Vref  VS 9  t ln( JK )
CMOS Analog Design Using All-Region MOSFET
Modeling
20
Design of a SBCS – 4
Vx
VFCM
Vx
A self-biased current source
CMOS Analog Design Using All-Region MOSFET
Modeling
21
Design of a SBCS – 5
VX
t
 1 i f 2  1 i f 2
 1  i f 2 1 

 ln 
 1  i f 2 1 


Output current: Iref=10 nA
ISHn-channel100 nA, ISHp-channel40 nA
=1
Let us choose
M1 &M2 in MI: if2 = 10
  1
S2= S1, N = 1
=10 nA
S2 
1
1    1  1  1  3
S1  N 
 1  30  1 
 1  30  1  10  ln 
  2.93
t
1

10

1


VX
VFCM
M3 &M4 in WI: if3(4) <<1
VX
t
 ln     e2.93  18.7
18.7  1 
S4  1  S4
 8.85
1   
S3  1 
S3
I S 2i f 2  10 nA  I S 2  1 nA  S2  S1  0.01
Let us choose if3=0.187  i f 4  i f 3 / 1  2S4 / S3   0.01
S
S3  4  1.13
8.85
I S 4i f 4  10 nA  I S 4  1 A  S4  10
CMOS Analog Design Using All-Region MOSFET
Modeling
22
Design of a SBCS – 6
Summary
=1
S
if
ir
M1
0.01
10
0
M2
0.01
30
10
M3
1.13
0.187
0.01
M4
10
0.01
0
M8, M8(a)
1
0. 1
0
M9, M9(a)
1
0. 1
0
MP (all)
2.5
0.1
0
=10 nA
S4  10
S2  0.01
VX  2.93t
S1  0.01
VFCM
CMOS Analog Design Using All-Region MOSFET
Modeling
VX  2.93t
S3  1.13
23
Design of a SBCS – 7
CMOS Analog Design Using All-Region MOSFET
Modeling
24