(b). - PAGES

Download Report

Transcript (b). - PAGES

The variability of the Asian summer monsoon in warmer climate

Ding Yihui* (National Climate Center, CMA) *Contributers: Wang Zunya, Sun Ying,Liu Yunyun, Liu Yanju, Song Yafang, Zhang Jin

Outline

1. The variability of Asian summer monsoon under global warming in last 100-years 2. Future change in Asian summer monsoon in a warmer world in next 100 years 3. Discussions and conclusions

1. The variability of Asian summer monsoon under global warming in last 100-years

Climatology of the Asian summer monsoon Fig.1. The vertically integrated moisture flux transport (surface to 300hPa )averaged for summer (JJA: June, July and August) of 1948 2006(Unit

kg.m

-1 .s

-1

Fig.2. The vertically integrated field of divergence of moisture transport for JJA of 1948-2006. Negative (positive) regions denotes the convergence (divergence) of moisture

Unit

10 -5 kg.m

-2 .s

-1 )

Fig.3. Climatological mean (1979-2006) summer precipitation pattern ( Unit:mm.d

-1 )

29.19

162.21

AS (+85.23) 786.60

1.16

834.39

193.06

BOB 8.79

27.00

23.49

(-5.82) 49.63

(+78.81) NC YHRB 91.24

97.58

37.71

202.54

(+70.42) 94.72

SC (+30.61) NEC 32.11

116.33

53.39

(+341.80) NWNP 267.35

SCS (+329.27) 455.54

(+201.14) 111.64

405.21

(+519.28) SWNP 28.6

6 202.29

544.98

143.47

124.59

267.87

120.21

202.46

(-892.19) SIO 79.52

Fig.4. Schematic maps of the climatological mean moisture budgets of the Asian-Pacific summer monsoon region in summer (JJA) (Units:106kg/s). The shaded area refers to the Tibetan Plateau. The positive and negative values represent net moisture influx and efflux, respectively. SIO: South Indian Ocean(30S

°

0

°

N, 40

°

E-120

°

E); AS: Arabian Sea(0

°

-22.5

°

N, 40

°

E-80

°

E); BOB: Bay of Bengal (0

°

-22.5

°

N , 80

°

E-100

°

E); SCS: South China Sea(0

°

-22.5

°

N , 100

°

E-120

°

E) ; SC: South China (22.5

°

N-27

°

N, 100

°

E-120

°

E); YHRB: Yangtze–Huaihe River Valleys(27

°

N-35

°

N, 100

°

E-120

°

E); NC: North China(35

°

N-42

°

N,100

°

E-120

°

E); NEC: Northeast China(42

°

N-54

°

N ,120

°

E-135

°

E); NWNP: northwestern part of North Pacific (22.5

°

N-45

°

N , 120

°

E-160

°

E); SWNP: southwestern part of North Pacific(0

°

-22.5N

°

, 120

°

E-160

°

E).(Liu, et al.,2009)

Time series of observed mean surface temperature change for last 100 years Top panel: NH; bottom panel: China. Red: trends , blue:21-yr running average.

气 温 距 平 (K) 气 温 距 平 2 1.5

1 ( C ) 0.5

OBSWG OBSt OBSm21 0 -0.5

-1 1880 1890 1900 1910 1920 1930 1940 1950 year 1960 1970 1980 1990 2000 年 年

观测近百余年北半球(上图, Latif

等,

2009

)和中国(下

图,根据龚道溢,王绍武, 2009 计算绘制)年

平均气温距平

变化(图中黑线是年平均距平,红线是线性趋势,兰线是 21

年滑

动平均)

Correlation patterns of Asian-Pacific summer (JJA) monsoon

亚洲

-

太平洋季风降水的相关分布 西北太平洋关键区6~8月降水与亚洲-太平洋季风区降水的相关

Teleconnection modes of various components of Asian

-

+

-

+ + + + + +

-  季风子系统的遥相关(季节内变率的整体性) 夏季风爆发初期,ISM通过“南支”遥相关型影响长江流域梅雨;  夏季风盛行期间,ISM通过“北支”遥相关型影响华北地区降水;  WNPSM主要通过经30~60天滤波的CISO影响中国夏季降水。

Weakening of the Asian summer monsoon and superposed inter-annual and inter-decadal variability . Fig.5. Long-term variation of the East summer monsoon index for 1870-2003 (based on Guo

s monsoon index). Positive(negative)values denote stronger (weaker)summer monsoon than normal. (IPCC, 2007)

Inter-decadal variability for all India precipitation 12-18,30-40 and 60-80-yr oscillation

年代际变率:

12-18

年,

30-40

年,

60

80

(Goswami,2005)

Long–tem of anomalous precipitation in Asian-African monsoon regions

30 15 0 -15 降水距平 百分比

/%

-30 30 15 0 -15 -30 30 15 0 -15 -30 80 40 0 -40 1900 1920 1940 1960 1980 1880-2008年亚非季风区降水量异常 2000

a

西非 West Africa (Trenberth, et al. 2007)

b

东非 East Africa (Trenberth, et al. 2007)

c

南亚 South Africa (Trenberth, et al. 2007)

d

中国华北(71个站序列) North China Ren and Feng (2009)

我国降水分布发生了明显变化

Significant change in summer precipitation pattern in China (1958-2007) unit:%/10yrs

( 单 位 : 年 ) (中国气象局气候变化中心) 近50年来,西部地区降水约增加 15%

50% ;东部地区频繁出现“南涝北旱”,华南地 区降水约增加 5%

10%, 而华北和东北大部分地区约减少 10%

30% 。 (图:1958 2007年我国年降水量变化幅度)

Difference in drought days between 1979-2008 and 1951-1978

50 40 30 20 80 90 100 110 120 130 1979-2008年和1951-1978年年平均干旱日数之差 (单位:天) (第二次国家气候变化评估报告初稿, 2009 )

Numbers of days of heavy rainfall

近50年来中国大陆极端强降水日数的变化趋势(实心和虚心圆分别代表增 加和下降趋势,按半径大小分别为每10年变化7.5% 以上,7.5%~2.5%, 小于2.5% ,显著变化的地区标有叉号)

Vulnerability of fresh water resources in the context of global climate change (high stress region in North China)

气候

变化下,全球现代淡水资源的脆弱性和他们的管理

IPCC , 2007

(a) 华北 (b) 长江 (c) 华南 (d) 梅雨季 123年(1880-2003)中国东部分区降水的变化

Long –term (123yr)variation of summer precipitation in North China (a), Yangtze River basin (b), South China (c) and Meiyu season

Va ria nc e ( σ 2 ) (a) 华北 Va ria nc e ( σ 2 ) (b) 长江 Period (years) Period (years) Va ria nc e ( σ 2 ) 华南 Va ria nc e ( σ 2 ) 梅雨季 Period (years) Period (years) 小波分析功率

谱: 30-40

年与

80

年周期

趋势变化分析: 1978

1992

是两个突

变点 Spectrum power of wavelet analysis:30-40-yr and 60-80-yr oscillations

中国东部不同分区夏季降水的主要周期

Major periods of summer precipitation in different subregions of East China subdivision

分区 华南

South China

长江中下游

Yangtze

华北

North China

长江中下游5站 (121年)

Meiyu Season

* 代表超过 50% 信度 A时段(123年) B时段(54年) 4, 14*, 30*, 80* 2*, 7*, 20*, 40* 3, 9, 18*, 40*, 80 2, 7, 12, 40*, 80* 2*, 7, 30* 2*, 7,14, 40* 3*, 9, 18 2, 7*, 12, 40*

中国东部三个地区夏季降水的突变点检验

Detection of abrupt change points for different subregions in East China Methods

方法 South China 华南 1980, 1992 Running Test Yamamoto et al., (1986) 1980 Mann-Kendall (1945; 1975) 1993 , 1992

Yangte

长江中下 游 1978

North China

华北 1965, 1979

Meiyu

梅雨期长江中下 游5站 1978 1979 1982 1964, 1980 1975 1980 1978 所有的突变点都超过95%的信度

(a) 空间分布 (c) 15 10 5 0 -5 (b) -10 -15 0 -5 -10 1950 15 10 5 1950 1960 1960 1970 1980 Year 时间系数 1990 (d) 1970 1980 Year 1990 2000 2000 2010 2010 中国夏季降水的EOF分析(1951-2004)

EOF modes of summer precipitation (JJA) for 1951-2004 (a)(c): EOF1

(b)(d): EOF2

夏季

水汽

送向量 的

EOF

分析 下

图是 时间系

数 60 40 20 0 -20 -40 1950 1965 1980 Year 1995 2010

Leading EOF model of moisture tranport for Asian summer monsoon

a

3 2 1

b

0 1951 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 -1 -2 -3 图2 1951~2005年夏季850hPa风场的EOF分解的第1特征向量(a)及对应的时间系数(b)

1951-1978 1979-1992 1993-2004 中国不同 时段,夏季降水距平百分比分布 的 变化。(阴影区是正距平,相对于 1971 2000 年平均 值)

In-decadal shifts of summer monsoon patterns in China shading: positive anomaly percentage

1951-2004中国东部(107.5-130°E)平均夏季异常降水纬度-时间剖面图。单位: mm

Latitude-time cross-section of summer precipitation departure(107.5-130

°

E)

850 hPa

平均

经向风纬度时间剖面图

unit: ms -1

)。阴影区是异常南

风。 Latitude-time cross-section of 850hpa V-component departures, shading: South wind

(a) (b)

1955-2004

异常夏季水汽

输送 输送总量)。单位 : Kgm -1 g -1 (a)

和水汽

汇 (Q 2 ) (b) 纬度 时间剖面图。(地面到 300hPa (a)

10 -5 Kgm -1 s -1 (b).

Cross-sections of anomalous moisture (a) transport and divergence (Q2) (b) for East China

a

850hPa wind EOF2 Time coefficient

C A

3 2 1 b 0 1951 1954 1957 1960 1963 1966 1969 1972 1975 1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 -1 -2 -3 c

Interannual Variability: TBO and 4-7-yr oscillations

1951~2005 年夏季 850hPa 风场的 EOF 分解的第 2 特征向量( a )、 时间系数( b )及时间系数的最大熵谱曲线( c )

c a

Sea level pressure

d

EOF fields of (a)EOF1 (c) EOF2 and corresponding time coefficients (b)EOF 1,(d)EOF2

2 1 b -2 -3 0 1951 -1 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 4 3 2 1 d 0 1951 -1 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 -2 -3

1951~2005

年夏季海平面气压场

EOF

分解 的第

1

2

特征向量(

a

c

)对应的时间系 数(

b

d

(a) (b)

Time series of the anomalous vertically integrated (from surface to 100hPa) apparent heat source (Q1) averaged for all Tibetan Plateau (75

105

°

E

27.5~42.5

°

N ) for summer (a), and spring (b). Solid lines denote 9-yr running mean curves. Unit: Wm -2

c

EOF fields of vertically integrated atmospheric heat source (Q1) (a) EOF1; (b) EOF2 and corresponding time coefficients; (b) EOF1

(d)EOF2

a 3 2.5

2 1.5

1 0.5

0 -0.5

1951 -1 -1.5

-2 b 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 2.5

2 1.5

1 0.5

0 -0.5

1951 -1 -1.5

-2 -2.5

d 1956 1961 1966 1971 1976 1981 1986 1991 1996 2001 整层积分的大气热源分布(阴影为负值区)

能是亚洲 太平洋夏季风系统的一种固有振荡,它与暖洋面上的海气相互作用振荡密切关联。 e

Composite SSTA (Nino 3.4) patterns for strong summer monsoon phase of the TBO cycle

a d e b e c 季

风强年海温的季节演变合成图( a

、前一年冬季;

b

、当年 春季;

c

、当年夏季;

d

、当年秋季;

e

、当年冬季;虚

线方框代表

印度洋偶极子关

键区和 Nino3.4

区) d

a: preceding winter (year 0) b

spring (year 1) c: summer (year1) d: autumn (year1) e: following winter (year2) Box: IOD and Nino 3.4.

Schematic of the anomalous fields for TBO of the Asian –Pacific forced by ENSO events .

850hPa 风场

亚洲 -

太平洋夏季

风准两年振荡的异常场示意图 绿色阴影区代表亚洲 -

太平洋季

风区夏季大气热源的正值区;黑色箭头代表 850hPa 环

流异常

场;灰色阴影区代表异常水汽辐合场;红(蓝)色曲线代表海温异常场

2. Future change in Asian summer monsoon in a warmer world in next 100 years

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 模式名称

Validations of IPCC model performance

模式和

CMAP 1979-99

夏季平均 降水的相关 模式和

GPCP 1979-99

夏季平 均降水的相关

CGCM3.1(T47) CGCM3.1(T63) CNRM-CM3 CSIRO GFDL-CM2.0

GFDL-CM2.1

GISS-EH GISS-ER FGOALS-g1.0

INM-CM3.0

IPSL-CM4 MIROC3.2(hires) MIROC3.2(medres) ECHAM5 MRI-CGCM2.3.2

CCSM3 PCM UKMO-HadCM3 UKMO_hadgem1 0.51

0.59

0.84

0.75

0.83

0.82

0.33

0.40

0.24

0.76

0.68

0.80

0.81

0.71

0.60

0.57

0.28

0.89

0.80

0.39

0.49

0.85

0.76

0.83

0.80

0.36

0.44

0.28

0.70

0.68

0.82

0.76

0.60

0.61

0.48

0.11

0.84

0.73

模式和中国站点降水资 料

1979-99

减去

1958 78

降水变化的相关

-0.52

0.31

-0.45

-0.10

0.46

-0.22

-0.50

-0.60

-0.50

0.15

-0.42

0.38

0.23

-0.43

0.43

-0.09

0.46

-0.76

-0.16

分类情况

3

3

2

2

1

2

3

3

3

2

3

1

1

3

3

3

3

2

2

2010-2099

中国

东部降水变化百分率 EOF

分析

结果 EOF analysis of summer precipitation in East China for 2010-2099

Fig.10. Future percentage changes(%) in summer precipitation for East Asia and its three sub-regions (South China, Yangtze River Valley(YRV) and North China), relative to climatological mean of 1980 1999. Projections are based on 19 IPCC AR4 climate models.(Sun and Ding,2009)

2010-2099

中国

东部降水时间 纬度剖面 Latitude-time cross-section of East Asian summer precipitation for 2010-2099

Fig.12. Future change of the East Asian summer index for next 100 years( based on the definition of monsoon index by Lu and Chan, with estimate of the V-component of wind). (Sun and Ding,2009)

2010-2099东亚850hPa水汽输送变化时间-纬度剖面

Latitude –time cross-section of 850hpa moisture transport in East Asia for 2010-2099

Projection of South Asian summer monsoon The land-sea thermal contrast for June-July-August September (JJAS) between the TP region(20o-40

°

N, 60o 100

°

E) and the tropical Indian Ocean (TIO, 10

°

S-10

°

N, 60o-100

°

E) (see the black boxes in Fig. 1a) was computed for both the upper and lower troposphere using TCupper=

Thickness(200-500hPa, TP) – Thickness(200-500hPa, TIO)

and TClower = Temperature (near-surface [2m], TP) – Temperature (500-850hPa, TIO). The 500-850hPa temperature over the TIO is used as a proxy of near surface temperature after height adjustment for comparison with 2m air temperature over the TP, which is 2-5km above the mean sea level . (Sun, Ding and Dai,2010)

Long-term (1979-2000) mean of June-July-August (JJAS) 850hPa winds (arrows, in m s-1) and 200-500hPa thickness anomaly (colors, in geopotential meter [gpm]) relative to the mean of the domain (10

°

S 45

°

N, 30

°

-140

°

E).

Temporal evolution of (a) JJAS MI (black, in m s-1), TCupper (red, gpm), and TClower(blue, gpm), and (b) JJAS -U200 (black, m s-1) and U850 (green, m s-1) anomalies (relative to1980-1999 mean) averaged over 0

°

-20

°

N and 40

°

110

°

E, and TCupper (red, gpm), and TClower (blue, gpm) from 1951 to 2099 based on IPCC AR4 7-model arithmetic mean under observation-based forcing during 1951-2000 and the A1B scenario for 2001-2099. U200 anomalies in (b) were multiplied by -1 to show the weakening of 200hPa easterly winds.

IPCC 7-model averaged (a) time height cross-section of JJAS temperature departures (K, from 1980-1999 mean) averaged over the TIO during 1951-2099. (b) Latitude-height cross section of JJAS temperature change (K) from 1980-1999 to 2080-2099averaged between 60

°

E and 100

°

E. The topography along 90

°

E is shown by the black areas.

(c) Longitude-height cross-section of change (K, from 1980-1999 mean) in JJAS meridional temperature gradient (temperature changes averaged from 20o-40 ° N minus that from 10 ° S-10 ° N) for 2080-2099. The topography along 35 ° N is shown by the black areas. (d) Time series of JJAS 200-500hPa thickness anomalies (gpm, from 1980-1999 mean) over the TP (solid line) and TIO (dashed line) during 1951-2099.

3. Discussions and conclusions

(1) In recent three decades, North and Northeast China have suffered from severe and persistent droughts while the Yangtze River basin and South China have undergone much more significant heavy rainfall/floods events. This long-term change in the summer precipitation and associated large-scale monsoon circulation features have been examined by using about 123-yr (1880–2002) records of precipitation in East Asia. One dominating mode of the inter-decadal variability of the summer precipitation in China is the near-80-yr oscillation. Then, on this basis, a possible explanation of this long term change in relation to significant weakening of the Asian summer monsoon, possibly due to the abrupt increase in the preceding winter and spring snow over the Tibetan Plateau and warming of the sea surface temperature in tropical central and eastern Pacific since about 1978,has been set forward.

But we cannot answer whether the anthropogenic forcing has caused the changes of patterns of rainfall, floods/droughts in China, and East Asian monsoon. Natural fluctuation of climate change can also play an important role. It needs the further studies

.

(2) It seems that the major rainfall belts would move northward by about 2040, but unstable. Afterwards, the summer precipitation in North China would increase considerably and stably. Furthermore, this anthropogenically-driven precipitation shift would appear to be consistent with the occurrence of rainfall peak period caused by the natural near-80-yr cycle. But this coincidence will be reliable?

(3)The above analyses show that the differential increases of the upper-tropospheric temperature over the TIO and TP lead to the changed relationship between the SASM intensity and tropospheric thermal contrasts over the SASM regions in a GHG-induced warmer climate. The weakening of the SASM circulation is directly related to the decrease of upper-tropospheric TP-TIO thermal contrast, which in turn is caused by the larger upper tropospheric warming over the TIO than over the TP. The fact that the SASM weakens as the lower-tropospheric thermal contrast increases in the 21st century implies a smaller role of this thermal contrast in determining the SASM intensity than suggested by previousstudies for the 20th century.

(4) Uncertainty of modeling the enhancement of water vapour in upper troposphere in tropics and subtropics