Transcript Document

Accuracy Assessment of NEXTMap Elevation Data for the State of Alabama

M. Lorraine Tighe PhD Candidate Director, Geospatial Solutions - Intermap November 18, 2011

2

Agenda

Introduction Objectives Study Area Data Analysis Results Discussion Conclusions

3

Introduction

This paper presents the results of the vertical accuracy of NEXTMap derived bare ground elevation data over a variety of land cover types by comparing it against National Geodetic Survey (NGS) reference points and against the United States Geological Survey National Elevation Data (NED) for the State of Alabama.

4

Objectives

Investigate the accuracy of the NEXTMap data for the State of Alabama against survey control reference data (1126 available NGS) and 10 m NED data.

Investigate barren and obstructed land cover of all slopes.

5

Study Area

State of Alabama Area: 52,419 mi 2 (135,765 km 2 ) Elevation Range: sea level to 2,413 ft (735.5 m) Water Land Cover: 3.19% (1,672 km 2 ) Forest Land Cover: 67% 22 million ha (89,000 km 2 )

6

Data

Elevation Data: • 5 m NEXTMap DTM • 10 m NED DTM Reference Data: • 1126 National Geodetic Survey (NGS) geodetic data points

1126 NGS control points

Collection – to – End Product: NEXTMap

Collection Production Aggregation Applications Distribution 7

© 2011 Intermap Technologies. All rights reserved.

8

The Core Technology - IFSAR

Interferometric Synthetic Aperture Radar - IFSAR Note: STAR-3

i

uses GPS ground station for differential processing; no other ground control points are required.

9

IFSAR Processor to Derive Height Measurements The variation in phase difference from pixel to pixel can be converted into relative change in surface elevation through a set of (closed form) equations to yield x, y, and z.

A 1 B a A 2 h q f r r + dr beams

z(y) y

10

Digital Surface Model (DSM)

DSM:

Winston County, Alabama. Confluence of Right Fork Clear Creek and Clear Creek. Also showing US Highway 278.

11

Digital Terrain Model (DTM)

DTM:

Winston County, Alabama. Confluence of Right Fork Clear Creek and Clear Creek. Also showing US Highway 278.

12

Handling Obstructed and Void Areas

The acquisition plan is designed to minimize the percent of void data in the output product.

We have a fully integrated terrain solution (FITS) that can utilize modified DSM data or ancillary data to fill in voids and to help recalculate the terrain surface beneath vegetation canopies.

e.g. Before the “Void Infill” process has been automatically run, void areas have an appearance interpolated

13

Terrain Solution

We use a modified version of our multiple DSM passes or ancillary data to rebuild the DTM in areas of void and obstruction.

We will use available ancillary data as a last resort.

e.g. After the “Void Infill” process has been automatically run, the ancillary DEM has a more natural appearance

Analysis

Visual assessments, in particular, drainage features were conducted. Statistical analysis (RMSE, mean error, standard deviation, cumulative frequency plot) is implemented with the use of the NGS geodetic data points to calculate the vertical accuracy of the NEXTMap and NED data.

14

Data Characterizations: land cover analysis to characterize where to expect the range of vertical accuracies.

15

Visual Assessment Results

Intermap’s NEXTMap data for the State of Alabama is current, as a majority of the state was collected with the same sensor between 2005 and 2008. By comparison, a majority of the vintage NED that is available for the state was collected between 1960 and 1979. Portions of the NED were collected prior to 1959.

Different vintages and resolutions result in different drainage delineations.

16

Visual Assessment Results

NEXTMap

17

Statistical Results (1)

Land Cover Barren Slope

<10 o

Vegetation Dense Vegetation

<10 o 0 o - 29 o

Statistic (m)

Mean error StDev

RMSE

Mean error StDev

RMSE

Mean error StDev

RMSE NEXTMap

-0.19

0.51

0.55

-0.5

1.38

1.47

-0.74

2.59

2.99

NED

0.13

1.35

1.36

-0.27

1.53

1.56

-0.5

3.66

3.67

18

Statistical Results (2)

Cumulative percent error plot (Barren, low slopes)to help to visualize what percentage of data can be expected to meet various accuracies.

DEMs vs. VCP

100 90 80 70 60 50 40 30 20 10 0 0 0.5

1 1.5

NED 2 2.5

3 3.5

4 SRTM_DT2 4.5

5 5.5

6 6.5

DTM 7 7.5

8 8.5

DSM 9 9.5

10

19

Alabama Data Characterization

A snapshot of the data characterization of the State of Alabama, with respect to the accuracy to be expected by NEXTMap data.

20

Conclusions

Vertical Accuracy Assessment (expressed in RMSE): • • 0.55 m in barren terrain 1.27 – 3 m in obstructed terrain (e.g. vegetation/urban) Hydrological analysis: • • • NEXTMap more accurate representation of water ways (e.g. lakes, ponds, rivers, streams) than NED difference in DTM resolution: 5m NEXTMap, 10 m NED temporal differences: NEXTMap 2008; NED ~ 20 years

Thank You

QUESTIONS?

21

More information: [email protected]

[email protected]

www.intermap.com