Transcript SVM-final
Introduction to SVM Zhang Liliang Outline • SVM——SVM的概念和目的 • Hard Margin SVM——最原始的SVM及其 对偶形式 • Soft Margin SVM——引入松弛变量 • Kernel——解决低维到高维的映射 The Support Vector Machine (SVM) approach • The original Support vector machines (SVMs) is a binary classification algorithm. TARGET:Find out a linear decision surface (“hyperplane”) Case 1: Linearly separable data; “Hard-margin” linear SVM Maximize the Gap! Statement of linear SVM classifier Statement of linear SVM classifier SVM optimization problem: Primal formulation Gap(Margin): Problem Transformation: max D -> min w -> min w^2 - > min 1/2(w^2) SVM optimization problem: Dual formulation Case 2: Not linearly separable data;“Soft-margin” linear SVM Parameter C in soft-margin SVM Not linearly separable data: Kernel trick Popular kernels Conclusion • SVM:Maximize the Gap(Margin) max D -> min w -> min w^2 - > min 1/2(w^2) Hard-margin: Soft-margin: Kernel trick: Reference • http://blog.csdn.net/v_july_v/article/details/ 7624837(支持向量机通俗导论(理解 SVM的三层境界)by July) • http://www.autonlab.org/tutorials/svm15.pd f;(来自卡内基梅隆大学carnegie mellon university(CMU)的讲解SVM的PPT) • http://www.nyuinformatics.org/downloads/s upplements/SVM_Tutorial_2010/Final_WB .pdf(A Gentle Introduction to Support Vector Machines in Biomedicine) Thanks~