Transcript Chapter 6 Section 3 - Canton Local Schools
Chapter 6
Trigonometric Identities and Equations
© 2011 Pearson Education, Inc. All rights reserved
SECTION 6.3
Double-Angle and Half-Angle Identities OBJECTIVES 1 2 3
Use double-angle identities.
Use power-reducing identities.
Use half-angle identities.
DOUBLE-ANGLE IDENTITIES
sin 2
x
2 sin
x
cos
x
cos 2
x
cos 2
x
sin 2
x
tan 2
x
2 tan 1 tan 2
x x
cos 2
x
1 2 sin 2
x
cos 2
x
2 cos 2
x
1 © 2011 Pearson Education, Inc. All rights reserved
3
EXAMPLE 1 Using Double-Angle Identities 3 is in quadrant II, find the 5 exact value of each expression.
a. sin 2 b. cos2 c. tan 2 Solution Use identities to find sin
θ
and tan
θ
.
sin tan sin cos 2 4 / 5 3 / 5 1 9 4 25 3 4 5
θ
is in QII so sin > 0.
© 2011 Pearson Education, Inc. All rights reserved
4
EXAMPLE 1 Using Double-Angle Identities Solution continued a . sin 2 2 sin cos 3 5 24 25 b. cos 2 cos 2 s in 2 2 3 5 9 25 7 25 16 25 5 2 © 2011 Pearson Education, Inc. All rights reserved
5
EXAMPLE 1 Using Double-Angle Identities Solution continued c. tan 2 1 2 ta n t a n 2 8 1 3 16 9 8 3 7 9 2 1 4 3 4 3 2 8 3 9 7 24 7 © 2011 Pearson Education, Inc. All rights reserved
6
EXAMPLE 3 Finding a Triple-Angle Identity for Sines Verify the identity sin 3
x
= 3 sin
x
– 4 sin 3
x
.
Solution sin 3
x
= sin (2
x
+
x
) = sin 2
x
cos
x
+ cos 2
x
sin
x
= ( 2 sin
x
cos
x
) cos
x
+ ( 1 – 2 sin 2
x
) sin
x
= 2 sin
x
cos 2
x
+ sin
x
– 2 sin 3
x
= 2 sin
x
( 1 – sin 2
x
) + sin
x
– 2 sin 3
x
= 2 sin
x
– 2 sin 3
x
+ sin
x
– 2 sin 3
x
= 3 sin
x
– 4 sin 3
x
© 2011 Pearson Education, Inc. All rights reserved
7
POWER REDUCING IDENTITIES
sin 2
x
1 cos 2
x
2 cos 2
x
1 cos 2
x
2 tan 2
x
1 1 cos 2
x
cos 2
x
© 2011 Pearson Education, Inc. All rights reserved
8
EXAMPLE 4 Using Power-Reducing Identities Write an equivalent expression for cos 4
x
that contains only first powers of cosines of multiple angles.
Solution Use power-reducing identities repeatedly.
cos 4
x
cos 2
x
2 1 cos 2
x
2 2 1 4
x
2 cos 2
x
© 2011 Pearson Education, Inc. All rights reserved
9
EXAMPLE 4 Using Power-Reducing Identities Solution continued 1 4 1 2 cos 2
x
1 cos 4
x
2 1 4 1 2 cos 2
x
1 2 1 2 cos 4
x
1 4 2 4 cos 2
x
1 8 1 8 cos 4
x
3 8 1 2 cos 2
x
1 8 cos 4
x
© 2011 Pearson Education, Inc. All rights reserved
10
sin 2
HALF-ANGLE IDENTITIES
2 cos 2 2 tan 2 The sign, + or –, depends on the quadrant in which lies.
2 © 2011 Pearson Education, Inc. All rights reserved
11
EXAMPLE 6 Using Half-Angle Identities Use a half-angle formula to find the exact value of cos 157.5º.
Solution 315 Because 157.5º = , use the half-angle identity for cos with θ = 315°. Because 2 2 2 lies in quadrant II, cos is negative. 2 157 .
5 cos157.5º cos 315º 2 2 © 2011 Pearson Education, Inc. All rights reserved
12
EXAMPLE 6 Using Half-Angle Identities Solution continued 1 2 4 º 1 2 2 2 2 2 2 2 2 © 2011 Pearson Education, Inc. All rights reserved
13