Transcript Document
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 12: Isoparametric CST Area Coordinates Shape Functions Strain-Displacement Matrix Rayleigh-Ritz Formulation Galerkin Formulation FEM Solution: Area Triangulation Area is Discretized into Triangular Shapes FEM Solution: Area Triangulation One Source of Approximation FEM Solution: Nodes and Elements Points where corners of triangles meet Define NODES Non-Acceptable Triangulation … Nodes should be defined on corners of ALL adjacent triangles FEM Solution: Nodes and Elements vi ui Y X Each node translates in X and Y FEM Solution: Objective q6 q5 3 (x3,y3) v q1 q2 u 1 (x1,y1) • Use Finite Elements to Compute Approximate Solution At Nodes • Interpolate u and v at any point from Nodal values q1,q2,…q6 q4 q3 2 (x2,y2) Intrinsic Coordinate System 3 (x3,y3) h x 2 (x2,y2) 2 (0,1) 1 (x1,y1) h x Map Element Define Transformation 3 (0,0) 1 (1,0) Parent Area Coordinates Y Location of P can be defined uniquely 2 A1 L1 A A2 L2 A A3 L3 A X A1 3 P 1 Area Coordinates Area Coordinates and Shape Functions L1 x L2 h L3 1 x h 3 (x3,y3) x 2 (x2,y2) 1 (x1,y1) h Area Coordinates are linear functions of x and h h Are equal to 1 at nodes they correspond to 2 (0,1) Are equal to 0 at all other nodes x 3 (0,0) 1 (1,0) Natural Choice for Shape Functions Shape Functions N1 L1 x N 2 L2 h 0 x 1 N3 L3 1 x h 0 h 1 3 (x3,y3) Y X x 1 (x1,y1) 2 (x2,y2) h Geometry from Nodal Values x N1 x1 N 2 x2 N3 x3 y N1 y2 N 2 y2 N3 y3 N1 L1 x N 2 L2 h N3 L3 1 x h x x1 x3 x x2 x3 h x3 x13x x23h x3 y y1 y3 x y2 y3 h y3 y13x y23h y3 Intrinsic Coordinate System 3 (x3,y3) x x13x x23h x3 y y13x y23h y3 Map Element x 2 (x2,y2) h 1 (x1,y1) Transformation 2 (0,1) h x 3 (0,0) 1 (1,0) Parent Displacement Field from Nodal Values 3 q6 u N1q1 N 2 q3 N3q5 q5 x 1 v N1q2 N 2 q4 N3q6 v q2 u q4 q1 2 q3 h N1 u 0 0 N1 N2 0 0 N2 N3 0 q1 q 2 0 q3 Nq N 3 q 4 q5 q6 Strain Tensor from Nodal Values of Displacements Strain Tensor u x v ε y u v y x Need Derivatives u x v y u y v x u N1q1 N 2 q3 N3q5 v N1q2 N 2 q4 N3q6 u and v functions of x and h Jacobian of Transformation u u x u y x x x y x u u x u y h x h y h u x x x u x h h J y u x x u y h y Jacobian of Transformation v v x v y x x x y x v v x v y h x h y h v x x x v x h h J y v x x v y h y Jacobian of Transformation – Physical Significance x x J x h y x y h x13 J x23 y13 y23 x x13x x23h x3 y y13x y23h y3 x x13 x y y13 x x x23 h y y23 h Jacobian of Transformation – Physical Significance 3 (x3,y3) r1 x r1 x1 x3 i y1 y3 j r2 r2 x2 x3 i y2 y3 j 2 (x2,y2) 1 (x1,y1) h i r1 r2 x13 x23 j k x13 y13 0 x23 y23 0 y13 k y23 Jacobian of Transformation – Physical Significance k r1 x 3 (x3,y3) r2 r1 r2 2 (x2,y2) y13 x23 y23 k 2 Aelem 1 (x1,y1) h x13 Compare to Jacobian x13 J x23 det J 2 Aelem y13 y23 Jacobian of Transformation u u x x u J u y h v v x x v J v y h Solve Solve u u x 1 x u J u y h v v x 1 x v J v y h 1 y23 y13 1 J det J x23 x13 2 Aelem 1 y23 y13 x x 13 23 Strain Tensor from Nodal Values of Displacements N1 x N2 h u N 1 0 N 2 x x u N 1 0 N 2 h h N3 1 x h 0 N3 q1 q 2 0 q1 q5 q6 0 N3 q1 q 2 0 q3 q5 q6 Strain Tensor from Nodal Values of Displacements v 0 N1 0 N 2 x x q1 q 2 0 N 3 q2 q6 q6 v 0 N1 0 N 2 h h q1 q 2 0 N 3 q4 q6 q6 Strain Tensor from Nodal Values of Displacements x ε 0 y 0 u 1 y v 2 Aelem x y23 0 x32 0 y31 0 y12 x32 0 x13 0 y23 x13 y31 x21 B e = B q Looks Familiar? q1 0 q2 x21 y12 q6 q Strain-Displacement Matrix xij xi x j 3 (x3,y3) yij yi y j x 1 (x1,y1) ex 1 ε e y 2 Aelem xy 2 (x2,y2) y23 0 x32 h 0 x32 y23 y31 0 x13 0 x13 y31 y12 0 x21 q1 0 q2 x21 y12 q6 Is constant within each element - CST Stresses x E y 2 1 xy 0 ex 1 1 0 e y 1 0 0 xy 2 σ Dε e = B q σ DBq Element Stiffness Matrix ke 3 (x3,y3) x 1 (x1,y1) 2 (x2,y2) h 1 T U e ε σDdV 2 Ve dV tdA e = B q = D B qe Ue 1 T T q e B DBtdA q e le 2 1 T T q e B DBt dAq e 2 A ke Formulation of Stiffness Equations T (force/area) y x z Assume Plane Stress t Tt (force/length) P y x P Total Potential Approach Tt (force/length) Total Potential P 1 T T T T σ εdV u fdV u TdS u i Pi V S 2 V i Total Potential Approach 1 T T T T σ εdV u fdV u TdS u i Pi V S 2 V i Tt (force/length) 1 T ε DεtdA Ae e 2 P uT ftdA uT Ttdl uTi Pi e Ae e le i Total Potential Approach 1 T ε DεtdA Ae 2 e u ftdA T e Ae u Ttdl T e le u Pi T i i Ue 1 T T q e B DBtdA q e le 2 1 T T q e B DBt dAq e 2 A 1 T q e k eq e 2 Total Potential Approach 1 T ε DεtdA Ae 2 e u ftdA T e Ae u Ttdl T e le u Pi T i i Work Potential of Body Forces WP of Body Forces 2 Element e fx fy 3 u WP u ftdA T f Ae te uf x vf y dA Ae v 1 WP of Body Forces WP f te uf x vf y dA Ae u N1q1 N 2 q3 N3q5 v N1q2 N 2 q4 N3q6 3 q6 q5 v q2 x 1 u q4 q1 2 q3 h 3 q6 WP of Body Forces q5 v q2 x 1 u q4 q1 2 1 Ae Ni dA 3 Ae , i 1,2,3 q3 h WP f q1 te f x N1dA q2 te f y N1dA Ae Ae q3 te f x N 2 dA q4 te f y N 2 dA Ae Ae q5 te f x N 3dA q6 te f y N 3dA Ae Ae WP of Body Forces WP u ftdA q f e T f T Ae q1 q2 fx f te Ae y q6 3 f x f y Nodal Equivalent Body Force Vector Total Potential Approach 1 T ε DεtdA Ae 2 e u ftdA T e Ae u Ttdl T e le u Pi T i i Work Potential of Tractions WP of Traction Tt (force/length) 2 3 1 Distributed Load acting on EDGE of element WP of Traction Components Tx1,Ty1 Known Distribution Tx2,Ty2 Normal Pressure p1, p2 Known Distribution WP of Traction Directional cos Ty2 l12 x y 2 21 Tx2 c cos y21 / l12 s sin x12 / l12 Ty1 Tx1 Components Tx1 cp1 Normal Pressure p 1 , p2 2 21 Known Distribution Tx 2 cp2 Ty1 sp1 Ty 2 sp2 WP of Traction 2 WP T u Ttdl T v l12 Ty Tx u 3 1 te l12 uT x vTy dA WP of Traction Ty2 2 WP T u Ttdl T Tx2 l12 te l12 3 uT x vTy dA Ty1 Tx1 1 u N1q1 N 2 q3 N3q5 Tx N1Tx1 N 2Tx 2 v N1q2 N 2 q4 N3q6 Ty N1Ty1 N 2Ty 2 WP of Traction WP T u Ttdl T l12 te l12 uT x vTy dA qTe 2Tx1 Tx 2 2T T tel1 2 y1 y 2 q1 q2 q3 q4 6 Tx1 2Tx 2 Nodal Equivalent Ty1 2Ty 2 Traction Vector Total Potential Approach 1 T ε DεtdA Ae 2 e u ftdA T e Ae u Ttdl T e le u Pi T i i Work Potential of Concentrated Loads WP of Concentrated Loads P WP Pi u Pi ui Pxi vi Pyi T i Indicates that at location of point loads a node must be defined In Summary 1 T ε DεtdA Ae 2 e 1 T q e k eq e e 2 u ftdA q f u Ttdl q Te u Pi Q Pi T e Ae T e le T i i T e e e T e e T i i After Superposition 1 T q e k eq e e 2 q f T e e e q Te T e e Q Pi T i i 1 T T Q KQ Q F 2 where F f e Te P e Minimizing wrt Q 0 KQ F Galerkin Approach Tt (force/length) P Galerkin 0 σ εφdV φ fdV φ TdS φ P T V T V T S T i i i Galerkin Approach 0 σ εφdV φ fdV φ TdS φ P T T V T V T i S i i Tt (force/length) 0 Ae e ε Dεφ tdA T P φ ftdA φ Ttdl φ Pi T e Ae T e le T i i Galerkin Approach Introduce Virtual Displacement Field f φ Nψ y6 3 y5 fy y2 1 x fx εφ Bψ y4 y1 2 y3 h y 1 y 2 ψ y 6 Galerkin Approach 0 Ve e σ εφ dV T φ fdV T e Ve φ TdA T e Ae φ Pi T i i U e Virtual Strain Energy of element e Element Stiffness Matrix ke 3 (x3,y3) x 1 (x1,y1) U e 2 (x2,y2) h Ae σ εφ dV T dV tdA φ Nψ e e = B ye = D B qe U e ψ T e B DB tdA q e T le T ψ B DBt dAq e A T e ke U e ψ k eq e T e Galerkin Approach 0 Ve e σ εφ dV T φ fdV T e Ve φ TdA T e Ae φ Pi T i i Virtual Work Potential of Body Forces WP of Body Forces fx fy 3 fy WP f φ ftdA T 2 Element e fx Ae te f x f x f y f y dA Ae φ Nψ 1 As we have already seen WP of Body Forces WP ψ ftdA ψ f e T f T Ae y 1 y 2 fx f te Ae y y6 3 f x f y Nodal Equivalent Body Force Vector Galerkin Approach 0 Ve e σ εφ dV T φ fdV T e Ve φ TdA T e Ae φ Pi T i i Virtual Work Potential of Traction WP of Traction 2 WP T φ Ttdl fy T l12 Ty Tx fx 3 te 1 f x N1y 1 N 2y 3 N3y 5 f y N1y 2 N 2y 4 N 3y 6 l12 f T x x f yTy dA Tx N1Tx1 N 2Tx 2 Ty N1Ty1 N 2Ty 2 WP of Traction WP T φ Ttdl T l12 te l12 f T x x f yTy dA ψ Te T e 2Tx1 Tx 2 2T T tel12 y1 y 2 y 1 y 2 y 3 y 4 6 Tx1 2Tx 2 Nodal Equivalent Ty1 2Ty 2 Traction Vector Galerkin Approach 0 Ve e σ εφ dV T φ fdV T e Ve φ TdA T e Ae φ Pi T i i Virtual Work Potential of Point Loads WP of Concentrated Loads P WP P φ Pi f xi Pxi f yi Pyi i T i Indicates that at location of point loads a node must be defined In Summary 0 Ve e σ εφ dV T 0 ψ T e k eq e e φ fdV ψ f φ TdA ψ Te φ Pi φ Pi T e Ve T e Ae T i i T e e e T e e T i i After Superposition 0 ψ k eq e T e e ψ f T e e e ψ Te T e e φ Pi T i i 0 Ψ KQ Ψ F T T where F fe Te P e Y is arbitrary and thus 0 KQ F Stress Calculations BC 0 KQ F 3 x 1 Q K F q6 q5 For Each Element ee = Be qe v q2 1 u q4 q1 2 q3 h y23 1 Be 0 2A x32 0 x32 y23 y31 0 x13 0 x13 y31 y12 0 x21 0 x21 y12 Stress Calculations 3 ee = Be qe q6 q5 v q2 x 1 u q4 q1 2 q3 h x E y 2 1 xy 0 ex 1 1 0 e y 1 0 0 xy 2 σ e De ε e σ e De B e q e Constant Summary of Procedure Tt (force/length) Discretize domain in CST Nodes should be placed at - point loads - start & end of distributed loads Summary of Procedure For Every Element Compute •Strain-Displacement Matrix B 1 B 2 Aelem 3 q6 y23 0 x32 q5 v q2 x 1 u q1 q4 2 q3 h 0 x32 y23 y31 0 x13 0 x13 y31 y12 0 x21 0 x21 y12 Summary of Procedure •Element Stiffness Matrix T k e B DBt dA A •Node Equivalent Body Force Vector fx f te Ae y fe 3 f x f y Summary of Procedure •Node Equivalent Traction Vector 1 2 e T 2Tx1 Tx 2 2T T tel1 2 y1 y 2 6 Tx1 2Tx 2 Ty1 2Ty 2 For ALL loaded sides Summary of Procedure Collect ALL Point Loads in Nodal Load Vector Py1 1 Px1 PyN N PxN Px1 P y1 Px 2 P Py 2 PxN P yN Summary of Procedure Form Stiffness Equations K k e e F f e Te P e Q q1 q2 qn T F F1 F2 Fn T F KQ Summary of Procedure F KQ Solve Apply Boundary Conditions 1 Q K F For Every Element Compute Stress σ e De B e q e Example Tt=200 lb/in (0,2) (3,2) fx=0 fy=60 lb/in2 (0,0) (3,0) ANSYS Solution – Coarse Mesh 2-D Constant Stress Triangle Comments • First Element for Stress Analysis • Does not work very well • When in Bending under-predicts displacements – Slow convergence for fine mesh • For in plane strain conditions – Mesh “Locks” – No Deformations Element Defects Element Defects Constant Stress Triangles Exact Y-Deflection & X-Stress about ¼ of actual Element Defects x1=0, y1=0 x2=a, y2=0 x3=0, y3=a 1 ex a e y 0 xy 1 a 0 1 a 1 a 1 a 0 0 0 0 0 0 1 a 1 a 0 0 0 1 u 2 a v2 0 0 0 u2 ex a ey 0 xy u2 a ? Spurious Shear Strain Absorbs Energy – Larger Force Required Element Defects Rubber Like Material ~0.5 Mesh Lock