Howard White

Download Report

Transcript Howard White

Howard White
ENHANCING POLICY
EFFECTIVENESS: THE ROLE
OF IMPACT EVALUATION
提高政策效率:影响评估的作用
UNDERSTANDING IMPACT
EVALUATION
了解影响评估
Howard White
Lecture 1
演讲1
Steps in impact evaluation design
影响评估的设计步骤
Howard White
What is impact?什么是影响
• Impact = the outcome with the intervention
compared to what it would have been in
the absence of the intervention
• 影响 = 接受干预的主体与它在未接受干预
的情况下在结果上的差别
• At the heart of it is the idea of a attribution – and
attribution implies a counterfactual
• 它的核心是归因问题—— 而归因问题需要借助反事实
分析
Howard White
When to do an impact evaluation
什么时候进行影响评估
• Pilot programs
• 试点项目
• Innovative programs
• 创新项目
• Representative or important programs
• 代表性项目或重点项目
Howard White
Steps in evaluation design
评估设计步骤
• Clearly state objectives and outcomes
• 明确列出目标与预期结果
• Map out the causal chain
• 制定出因果关系链
• Identify evaluation questions
• 确定评估问题
• Identify best available method for different
evaluation questions
• 针对不同的评估问题选择最好的评估方法
Howard White
The principles原理
•
•
•
•
•
•
•
•
•
•
•
•
Map out the causal chain (programme theory): see figure from BINP example
制定出因果关系图 (项目理论): 参见孟加拉国综合营养计划(BINP)示例中的图
Understand context: Bangladesh is not Tamil Nadu
弄清项目环境: 孟加拉语不是泰米尔语
Anticipate heterogeneity: more malnourished children; different implementing
agencies
预期的异质性: 更加营养不良的儿童; 不同的执行主体
Rigorous evaluation of impact using an appropriate counterfactual: PSM
versus simple comparison
运用恰当的反事实进行严格的影响评估:倾向得分匹配 (PSM) 与简单对比
Rigorous factual analysis: targeting, KP gap, CNPs
严格的实例分析: 瞄准, KP缺口, CNPs
Use mixed methods: informed by anthropology, focus groups, own field visits
综合使用各类方法: 包括人类学、焦点小组访谈和实地考察等
Howard White
Program design (theory of change)
Target group
participate in
program
(mothers of
young
children)
Target group
for
nutritional
counselling is
the relevant
one
Exposure to
nutritional
counselling
results in
knowledge
acquisition and
behaviour
change
Behaviour change
sufficient to change
child nutrition
Children are
correctly
identified to
be enrolled in
the program
Food is
delivered to
those enrolled
Supplementary
feeding is
supplemental, i.e.
no leakage or
substitution
Improved
nutritional
outcomes
Food is of sufficient
quantity and quality
mothers
A
targeting
participants
Howard White
B1
B2
children
counselling
C1
C2
supplemental
feeding
change behavior in child nutrition
D1
D2
no leakage / substitute
D3
sufficient qnty / qlty
E
improved
nutrition
outcome
Amenia Project—Causal Chain
Indicator
Measure
Inputs
Children / teachers /
vitamins
Expenditure /
Number of Training
Material Packages for
teachers / Number of
vitamins
Activities/
Processes
Give student vitamin
per day
Number of vitamins
passed out per day
Actually give vitamins
Outputs
Kids that have been
given improved
nutrition
Number of kids that
took vitamins for entire
treatment
Kids swallow vitamins
when given / kids take
vitamins on weekends
Intermediate
outcomes
Falling anemia rates
(healthy kids)
Hb levels
Hb tests are accurate
Final outcomes
Better educational
performance
Scores on
standardized tests
Scores are measuring
educational
performance / there
was no extra help given
to kids in vitamin
schools
Howard White
Assumptions
A causal chain因果链
Indicator科目
Measure衡量指标
Inputs
投入
Money: teaching materials,
stipends, trainers
资金、教学材料、助学金、
培训员
Expenditure
费用支出
Supply of materials
for curriculum
课本供应
Activities/
Processes
活动/过程
Teacher training
对老师进行培训
No. of teachers
trained
接受培训的老师人数
Training of good quality
高质量的培训
Outputs
成果
Trained teachers
接受过培训的老师
Teacher skills
教师技能
Teachers apply skills
老师在教学中应用掌握的技能
Teachers retained
师资稳定
Intermedia
te
outcomes
中间产物
Improved pupil learning
outcomes
学生学习成绩提高
Test scores
考试成绩
School environment allows use
of improved methods
学校环境允许教师使用新方法
Test scores comparable
考试成绩有可比性
Income or
consumption
收入或消费
Productive employment available
充分的就业机会
Final
Higher productivity
outcomes
更高的生产率
最终结果
Howard Higher
White earnings
Assumptions假定条件
Common questions in TBIE
基于理论的影响评估(TBIE)中普遍使用的问题
Design设计
Implementation执行
Evaluation questions评估的
问题
Targeting
瞄准目标
群体
The right people?
是否选对合适的人群
Type I and II errors
I 类和II 类错误
Why is targeting failing?
(protocols faulty, not being
followed, corruption ..)
为什么瞄准失败? (方案不合理,
没有严格执行,腐败)
Training /
capacity
building
培训 /能力
建设
Right people? Is it
appropriate?
Mechanisms to ensure
skills utilized
合适的人群?是否恰当?
保证技能被利用的机制
Quality of delivery
Skills / knowledge
acquired and used
传授技能或知识的质量 / 知
识的获取和使用
Have skills / knowledge
changed? Are skills /
knowledge being applied?
Do they make a difference to
outcomes?
技能与知识是否已经变化? 这
些技能和知识会不会被很好地
运用? 运用技能与知识会带来
什么样的不同结果?
Howard White
Common questions in TBIE
基于理论的影响评估(TBIE)中普遍使用的问题
Interventi
on
delivery
采取干预
Tackling a binding
constraint?
Appropriate?
Within local institutional
capacity
应对大量的约束条件?
是否合适?
地方机构的能力建设
Delivered as intended:
protocols followed, no
leakages, technology
functioning and
maintained
带目的性地进行干预: 遵
守协议, 没有遗漏, 提供技
术支持并且持续干预
What problems have been
encountered in
implementation? When did
first benefits start being
realized? How is the
intervention perceived by
IA staff and beneficiaries?
在执行的过程中遇到了什么
问题? 被认可的收益是从什么
时候开始的? IA 人员和间接
收益者对干预的认知是怎样
的?
Behavior
change
行为变化
Is desired BC culturally
possible and
appropriate; will it
benefit intended
beneficiaries?
期望中的行为变化是否
可能、合适?能否使目
标人群受益?
Is BC being promoted as
intended (right people,
right message, right
media?)
行为变化是否被有意识地
发扬?(正确的人群、正
确的信息,合适的媒体传
播)
Is behavior change occuring?
If not, why not?
发生行为变化了吗? 如果没有,
为什么没有?
Howard White
Exercise练习
• Identify the objective(s) for your intervention and
main outcome(s) (select measurable indicators)
• 确定干预目的和主要成果 (选择可测量的指标)
• Map out theory of change underlying your
project
• 描绘出你的项目中的变化理论
• What are the related evaluation questions?
• 相关的评估问题有哪些?
Howard White
Lecture 2
演讲 2
Counterfactuals and comparison
groups
反事实分析和对照组
Howard White
The attribution problem归因问题:
factual and counterfactual事实与反事实
有项目
项目影响
没有项目
Impact varies over time
影响随着时间推移发生变化
Howard White
What has been the impact of
the French revolution?
法国革命的影响是什么?
“It is too early to say”
Zhou Enlai
“现在评价还言之过早”
周恩来
Howard White
• So where does the counterfactual come
from?
• 那么事实是从哪里来的呢?
• Most usual is to use a comparison group
of similar people / households / schools /
firms…
• 最常见的做法是选择相似人群、住户、学
校或者公司作为对照组
Howard White
What do we need to measure
impact? Girl’s secondary enrolment
我们需要什么信息来衡量影响呢? 以女
童初中入学为例
Before之前(基期)
Project (treatment)
项目 (处理)
After之后
92
Comparison
对照
Howard White
The majority of evaluations have just this
information … which means we can say
absolutely nothing about impact
大多数评估只有这些信息… 这意味着我
们根本不能评估影响
Before versus after single difference comparison
Before versus after = 92 – 40 = 52
项目组前后期的比较
干预前后的单差分= 92 – 40 = 52
Project (treatment)
项目 (处理)
Before之前
After之后
40
92
Comparison对照
“scholarships have led to rising
schooling of young girls in the project
villages”
“在实施奖学金项目的村庄,女童的就
学率升高”
This ‘before versus after’ approach is outcome monitoring, which has become popular
recently. Outcome monitoring has its place, but it is not impact evaluation
这种干预前后对照法是为了成果监测,近年来被广泛采用。这种成果监测法虽然不可或缺,
Howard White
但它不是影响评估。
Rates of completion of elementary male and female
students in all rural China’s poor areas
1993年与2008年中国农村贫困地区完成小学学业的男女比例
Share of rural children占农村儿童的份额
100
80
60
40
20
1993 2008
1993 2008
男
生
girls
Howard White
boys
0
女
生
Post-treatment control comparison
Single difference = 92 – 84 = 8
处理组与控制组事后数据
的单差分= 92 – 84 = 8
Before之前
After之后
Project (treatment)
项目 (处理)
92
Control控制组
84
But we don’t know if they were similar before… though
there are ways of doing this (statistical matching =
quasi-experimental approaches)
但是我们并不知道他们在基期的情况是否相似… 虽然可
以采用很多方法 (统计匹配 = 准实验方法)
Howard White
Double difference =
(92-40)-(84-26) = 52-58 = -6
双差分 =
(92-40)-(84-26) = 52-58 = -6
Before之前
After之后
Project (treatment)
项目(处理)
40
92
Comparison对照组
26
84
Conclusion: Longitudinal (panel) data, with a comparison group, allow
for the strongest impact evaluation design (though still need matching).
SO WE NEED BASELINE DATA FROM PROJECT AND COMPARISON
AREAS
结论: 纵向(面板)数据加上对照组可以更好地进行影响评估设计. 所以我
们需要项目组和对照组的基线数据。
Howard White
Main points so far主要观点
• Analysis of impact implies a counterfactual comparison
• 影响分析意味着反事实分析
• Outcome monitoring is a factual analysis, and so cannot tell us
about impact
• 成果监测是事实分析,并不是影响评估
• The counterfactual is most commonly determined by using a
comparison group
• 反事实分析通常需要选择对照组
If you are going to do impact evaluation you need a
credible counterfactual using a control group - VERY
PREFERABLY WITH BASELINE DATA
在影响评估中,你需要对照组做可信的反事实分析,
这就要求对照组最好也有基线数据
Howard White
Exercise练习
• Using hypothetical outcome data for the before/after,
comparison/treatment matrix calculate the
• 运用假定的对照组和处理组在干预前后的数据矩阵进行
以下计算
– Ex-post single difference
– 处理组与对照组在干预后的比较 (单差分)
– Before versus after (single difference)
– 干预前与干预之后的比较 (单差分)
– Double difference
– 双差分
Howard
White
Impact
estimates影响估算
Problems in implementing rigorous impact
evaluation: selecting a comparison group
实施严谨的影响评估面临的难题:选择对照组
• Contagion: other interventions
• 污染: 其它干预
• Spill over effects: control affected by intervention
• 溢出效应: 对照组(控制组)会受到干预措施的影响
• Selection bias: beneficiaries are different
• 选择偏误: 受益者不同
• Ethical and political considerations
Howard
White
• 出于民族与政治上的考虑
Lecture 3
演讲3
Selection bias and experimental designs
(randomized control trials, RCTs)
选择偏误和试验设计 (随机控制试验, RCTs)
Howard White
The problem of selection bias选择偏误问题
• Program participants are not chosen at random, but
selected through
• 项目参与者不是随机挑选的,而是
– Program placement 项目安排
– Self selection 自选择
• This is a problem if the correlates of selection are also
correlated with the outcomes of interest, since those
participating would do better (or worse) than others regardless
of the intervention
• 如果影响选择的因素与我们感兴趣的结果变量相关,那么变为出
现选择偏误。因为不论是否有这项干预,那些参与项目的人可能
都会比其他人做得更好(或者更不好)
Howard White
Selection bias from program placement
项目安排导致的选择偏误
• A program of school improvements is targeted at the poorest schools
• 改善学校项目的目标群体是最为贫困的学校
• Since these schools are in poorer areas it is likely that students have home
and parental characteristics are associated with lower learning outcomes
(e.g. illiteracy, no electricity, child labour)
• 由于这些学校都处于更为贫困的地区,这些学生的家庭特征和父母特征都与
更差的学习结果相关 (例如:文盲、不通电、童工等)
• Hence learning outcomes in project schools will be lower than the average
for other schools
• 因此这些项目学校的学业成绩要低于其他学校的平均水平
• The comparison group has to be drawn from a group of schools in similarly
deprived areas
• 对照组就必须在类似的贫困地区的学校中选择
Howard White
Selection bias from self-selection
由自选择导致的样本选择偏误
• A community fund is available for community-identified projects
• 社区基金往往只为社区范围内的项目提供经费
• An intended outcome is to build social capital for future community
development activities
• 该项目旨在为今后的社会发展活动建设社会资本
• But those communities with higher degrees of cohesion and social
organization (i.e. social capital) are more likely to be able to make proposals
for financing
• 但那些凝聚力强、社会组织完善的社区更可能提交项目建议书寻求资助
• Hence social capital is higher amongst beneficiary communities than nonbeneficiaries regardless of the intervention, so a comparison between these
two groups will overstate program impact
• 因此无论是否有社区基金的干预,那些受益的社区都比那些没有受益的社区
拥有更好的社会资本,所以两者之间的对比结果高估了项目的影响
Howard
White
Examples of selection bias
自选择的例子
• Hospital delivery in Bangladesh (0.115 vs 0.067)
• 孟加拉的住院分娩案例 (0.115 vs 0.067)
• Secondary education and teenage pregnancy in
• Zambia赞比亚的初中教育与青少年怀孕的案例
• Male circumcision and HIV/AIDS in Africa
• 非洲男性包皮环切与艾滋病
Howard White
Main point主要观点
There is ‘selection’ in who benefits from
nearly all interventions. So need to get a
control group which has the same
characteristics as those selected for the
intervention.
如果选择那些几乎能从所有干预中受益的人
群接受干预,那么需要找到一个与这些被选
择进来接受干预的人群特征相同的控制组.
Howard White
Dealing with selection bias
如何处理选择偏误
• Need to use experimental or quasi-experimental methods to cope with this;
this is what has been meant by rigorous impact evaluation
• 需要用试验法或准试验法处理这个偏误; 这就是严格影响评估所要求的
• Experimental (randomized control trials = RCTs, commonly used in
agricultural research and medical trials, but are more widely applicable)
• 试验法 (随机控制试验 = RCTs, 通常被应用于农业研究和医学实验,但其适用
范围可以更广)
• Quasi-experimental
• 准试验方法
– Propensity score matching倾向得分匹配法
– Regression discontinuity断点回归法
– Pipeline approach流水线方法
– Regressions
(including instrumental variables)回归法 (包含工具变量)
Howard
White
Randomization (RCTs)
随机控制试验 (RCTs)
• Randomization addresses the problem of selection bias by the
random allocation of the treatment
• 随机选择通过随机分配处理解决了选择偏误的问题
• Randomization may not be at the same level as the unit of
intervention
• 随机选择可能并不是在干预对象的同一水平进行
– Randomize across schools but measure individual learning outcomes
– 随机选择学校,但是度量的是个人的学习成绩
– Randomize across sub-districts but measure village-level outcomes
– 随机选择地区,但度量的是村级水平的结果变量
Howard White
Randomization (RCTs)
随机控制试验 (RCTs)
• The less units over which you randomize the higher your standard
errors
• 随机选择的对象越少(对象层级越高),你的标准误就越大
• But you need to randomize across a ‘reasonable number’ of units
• 但你需要对“合理数量”的单位进行随机选择
– At least 30 for simple randomized design (though possible
imbalance considered a problem for n < 200)
– 简单随机设计至少需要30个样本 (尽管认为n < 200时可能有失衡的
问题)
– Can be as few as 10 for matched pair randomization
– 对于配对的随机试验样本可以少到10个
Howard White
Issues in randomization随机选择中的问题
• Randomize across eligible population not whole population
• 随机选择的对象是符合要求的群体,而不是整个总体
• Can randomize across the pipeline
• 随机选择可以贯穿整个选择过程
• Is no less unethical than any other method with a control group
(perhaps more ethical), and any intervention which is not immediately
universal in coverage has an untreated population to act as a
potential control group
• 随机控制试验并不会比其他使用控制组的方法少面临一些道德问题 (或
许还要更多), 任何不打算立即全面实施的干预都需要一个没有接受干
预的总体作为控制组
• No more costly than other survey-based approaches
• Howard
随机控制试验不会比其他以调查为基础的方法花费更多
White
Conducting an RCT进行随机控制试验
• Has to be an ex-ante design
• 必须有一个事前的设计
• Has to be politically feasible, and confidence that program
managers will maintain integrity of the design
• 必须政治上可行,相信项目经理将会维护项目设计的完整性
• Perform power calculation to determine sample size (and
therefore cost)
• 通过评估效力计算确定样本规模(继而确定相应的成本)
Howard White
Conducting an RCT进行随机控制试验
• Adopt strict randomization protocol
• 采用严格的随机抽样程序
• Maintain information on how randomization done, refusals and
‘cross-overs’
• 及时收集关于随机抽样是如何进行的、干预的拒绝者,以及交叉
干预(cross-overs)的信息
• A, B and A+B designs (factorial designs)
• A, B 和 A+B 设计 (因素分析)
• Collect baseline data to 收集基期数据进行:
– Test quality of the match 检验匹配的质量
– Conduct difference in difference analysis 进行双差分分析
Howard White
Exercise练习
• Does your intervention suffer from selection bias?
Why?
• 你的干预是否存在选择偏误? 为什么?
• Is randomization an option for your intervention?
• 你在干预过程中是采用随机试验法吗?
• At what level would you randomize?
• 你是在哪个层次上进行随机选择的?
Howard White
Lecture 4
演讲 4
Quasi-experimental designs
准试验设计
Howard White
Quasi-experimental approaches
准试验方法
• Possible methods可能使用的方法
– Propensity score matching 倾向得分匹配法
– Regression discontinuity 断点回归法
• Advantage: can be done ex post, and when random
assignment not possible
• 优点:可以在事后进行,并在随机分配不可行时使用
• Disadvantage: cannot be assured of absence of selection bias
• 缺点:无法保证不存在选择偏误
Howard White
Propensity score matching倾向得分匹配法
• Need someone with all the same age, education, religion etc.
• 需要年龄、教育和宗教信仰等特征一样的人
• But, matching on a single number calculated as a weighted
average of these characteristics gives the same result and
matching individually on every characteristic – this is the basis
of propensity score matching
• 但是,倾向得分匹配是基于一个单个的数字进行的,这个数字是
对这些特征进行加权平均得到的。该方法与基于每个单个特征进
行匹配得出的结果是一样的,后者是倾向得分匹配法的基础。
• The weights are given by the ‘participation equation’, that is a
probit equation of whether a person participates in the project
or not
• 其中,加权的权重由“参与方程”给出,“参与方程”为一个人
Howard
White
是否参与了这个项目的Probit模型
Propensity score matching倾向得分匹配法:
what you need你需要什么
• Can be based on ex post single difference, though
double difference is better
• 尽管双差分更好,但是能够基于事后的单个差分进行
• Need common survey for treatment and potential
control, or survey with common sections for matching
variables and outcomes
• 需要处理组和潜在的控制组或者调查有同样的调查模块,
即包含共同的可以匹配的特征变量和结果变量
Howard White
Propensity score matching:
example of matching
倾向性得分匹配法示例:
water supply in Nepal
尼泊尔水供应案例
Variable变量
Before matching匹配前
After matching匹配后
Rural resident
农村居民
Treatment处理组: 29%
Comparison对照组: 78%
Treatment处理组: 33%
Comparison对照组: 38%
Richest wealth quintile
最富裕的20%
Treatment处理组: 46%
Comparison对照组: 2%
Treatment处理组: 39%
Comparison对照组: 36%
H/h higher education
更高的教育水平
Treatment处理组: 21%
Comparison对照组: 4%
Treatment处理组: 17%
Comparison对照组: 17%
Outcome (diarrhea
Treatment处理组: 18%
incidence children<2)
Comparison对照组: 23%
结果 (儿童疟疾患病率<2)
OR = 1.28
Howard White
Treatment处理组: 15%
Comparison对照组: 23%
OR = 1.53
Regression discontinuity: an example –
agricultural input supply program
断点回归示例 – 农业投入供应项目
纯
收
入
Howard White
土地持有(公顷)
Naïve impact estimates “天真”的影响评
估
•
•
Total = income(treatment) – income(control) = 9.6
总影响= 收入(处理组) – 收入(控制组) = 9.6
•
•
Agricultural h/h only = 7.7
农业h/h 仅为 = 7.7
•
•
But there is a clear link between net income and land holdings
但是纯收入和土地持有量之间有明显的联系
•
And it turns out that the program targeted those households with at least 1.5 ha of
land (you can see this in graph)
结果是,项目是针对那些至少拥有1.5公顷土地的农户开展的
•
•
So selection bias is a real issue, as the treatment group would have been better off in
absence of program, so single difference estimate is upward bias
•
所以,选择偏误现实存在,当处理组即便在没有项目的情况下处境也会改善时,单差
分就会高估项目的影响
Howard White
Regression discontinuity断点回归法
• Where there is a ‘threshold allocation rule’ for program participation,
then we can estimate impact by comparing outcomes for those just
above and below the threshold (as these groups are very similar)
• 当某项项目在确定参与条件时设置了一个“门槛分配原则”,我们可
以通过比较处于这个门槛里的和门槛外的两组(因为这两组非常相似)
人群来评估项目的影响
• We can do that by estimating a regression with a dummy for the
threshold value (and possibly also a slope dummy) – see graph
• 我们可以根据这个门槛值定义一个二元变量,然后对这个二元变量进
行回归 (可能也要有一个倾斜度虚变量)
• In our case the impact estimate is 4.5, which is much less than that
from the naïve estimates (less than half)
• 在我们的例子中,估计的影响是4.5,远低于前面得出的估计值(几乎
小一半)
Howard White
Discussion讨论
• What possible quasi-experimental designs
could you use for your intervention?
• 你会在你的干预计划中采取什么样的准试
验设计?
• What is “better” … RCT or
quasiexperiment?
– Easier
– More accurate
Howard White
– More feasible
Lecture 5
演讲 5
Data collection and mixed methods
数据收集和混合法的运用
Howard White
Overview on data collection数据收集总结
• Baseline, midterm and endline
– 基线、中期和后期
• Treatment and comparison
– 干预组和对照组
• Process data
– 数据加工
• Capture contagion and spillovers
– 捕捉样本污染与溢出效应
• Quant and qual
– 定量与定性
• Different levels (e.g. facility data, worker data) – link the data
– 不同层次 (例如. 机构数据,工人数据) – 链接这些数据
• Multiple data sources
– 多个数据来源
Howard White
Program design (theory of change)
Target group
participate in
program
(mothers of
young
children)
Target group
for
nutritional
counselling is
the relevant
one
Exposure to
nutritional
counselling
results in
knowledge
acquisition and
behaviour
change
Behaviour change
sufficient to change
child nutrition
Children are
correctly
identified to
be enrolled in
the program
Food is
delivered to
those enrolled
Supplementary
feeding is
supplemental, i.e.
no leakage or
substitution
Improved
nutritional
outcomes
Food is of sufficient
quantity and quality
mothers
A
targeting
participants
Howard White
B1
B2
children
counselling
C1
C2
supplemental
feeding
change behavior in child nutrition
D1
D2
no leakage / substitute
D3
sufficient qnty / qlty
E
improved
nutrition
outcome
Scott Rozelle
Stanford University
[email protected]
Linxiu Zhang
Chinese Academy of Sciences
[email protected]
Howard White
Data used in BINP study BINP研究中用到的数据
• Project evaluation data (three rounds)
– 项目评估数据 (三轮)
• Save the Children evaluation
– 挽救儿童评估
• Helen Keller Nutritional Surveillance Survey
– 海伦凯勒营养监督调查
• DHS (one round)
– DHS (一次)
• Project reports
– 项目报告
• Anthropological studies of village life
– 乡村生活人类学研究
• Action research (focus groups, CNP survey)
– 行动研究(焦点小组访谈, CNP调查)
Howard White
Some study costs部分研究的花费
• IADB vocational training studies: US$20,000 each
– IADB 职业培训研究: 每项US$20,000
• IEG BINP study US$40,000
– IEG BINP 研究 US$40,000
• IEG rural electrification study US$120,000
– IEG 农村通电研究 US$120,000
• IEG Ghana education study US$500,000
– IEG 加纳教育研究 US$500,000
• Average 3ie study US$300,000 +
– 3ie 研究的平均成本 US$300,000 +
• Average 3ie study in Africa with two rounds of surveys;
US$500,000 +
– 3ie在非洲的研究进行两次调查的平均成本; US$500,000 以上
Howard White
Some timelines部分活动时间段
• Ex post 12-18 months
– 事后 12-18个月
• Ex ante事前:
– lead time for survey design 3-6 months
• 调查设计 3-6个月
– Post-survey to first impact estimates 6-9
months
• 调查后到进行第一次影响评估6-9个月
– Report writing and consultation 3-6 months
• 报告撰写和商讨3-6个月
Howard White
Budget and timeline预算和活动时间段
• Ex post or ex ante
– 事后或事前
• Existing data or new data
– 已有数据或新数据
• How many rounds of data collection?
– 数据收集需要几轮?
• How large is sample?
– 样本规模多大?
• When is it sensible to estimate impact?
– 什么时候适合评估影响?
Howard White
• How large is the sample?
• This is about calculating “statistical power”
• This is to avoid a Type II error (finding from
the analysis that there is NO IMPACT …
when in fact there is an impact ..
• The project manager has to tell you:
• What is the “minimum detection size” of the
effect of your project …
• What size of impact would you consider large
enough?
Howard White
The role of mixed methods
混合方法的作用
• The mother-in-law effect in Bangladesh
– 孟加拉“婆婆”的作用
• The angry man in Andhra Pradesh
– 印度安德拉邦的“愤怒的人”
• The disconnected in connected villages pretty
much everywhere
– 相连的村庄却不相往来比比皆是
• Social funds in Zambia
– 赞比亚社会基金
Howard White
Exercise练习
• Propose for your intervention
– 你的干预计划
• Timeline for impact evaluation
– 影响评估时间段计划
• Budget
• 预算
Howard White
Final exercise总练习
• Prepare a 5 minute presentation which covers:
• 准备5分钟的演讲,内容包括:
– What the intervention is
– 干预是什么
– The main evaluation questions
– 主要评估问题
– How they will be addressed
– 如何解决这些问题
– What it will cost and how long it will take
Howard
White
– 需要花费什么,并且需要耗费多长时间
Scott Rozelle
Stanford University
[email protected]
Linxiu Zhang
Chinese Academy of Sciences
[email protected]
Howard White