Digital modulation methods –Qadrature Amplitude Modulation

Download Report

Transcript Digital modulation methods –Qadrature Amplitude Modulation

Infokommunikációs rendszerek –
Infocommunication Systems
Lecture 4. előadás
Kódolás, nyalábolás, kapcsolás
Coding, multiplexing, switching
Takács György
Infocom. 4. ea 2014. 09. 29.
1
Where we are now in study (tele-,
info-) communications systems?
• Networks are working systems of
terminals, nodes and links
• The basic technologies in links (wireline
and wireless) have been discussed
• Node functions (multiplexing, switching,
signalling, demultiplexing) will be
discussed today
Infocom. 4. ea 2014. 09. 29.
2
Infocom. 4. ea 2014. 09. 29.
3
Infocom. 4. ea 2014. 09. 29.
4
Analog modulation systems- (AM)
• Amplitude modulation
• The momentary amplitude of the carrier is
proportional to the momentary amplitude of the
modulating signal
Infocom. 4. ea 2014. 09. 29.
5
Analog modulation systems- (AM)
Infocom. 4. ea 2014. 09. 29.
6
The spectrum of the AM in the case of discrete
fm modulation frequency
Infocom. 4. ea 2014. 09. 29.
7
Frequency modulation systems- (FM)
• The momentary frequency of the carrier is
proportional to the momentary amplitude of the
modulating signal
Infocom. 4. ea 2014. 09. 29.
8
Frequency modulation systems- (FM)
Infocom. 4. ea 2014. 09. 29.
9
The spectrum of FM modulated signal in the
case of discrete fm modulation frequency
•
Infocom. 4. ea 2014. 09. 29.
10
Digital modulation methods – Amplitude
Shift Keying (ASK)
Infocom. 4. ea 2014. 09. 29.
11
Digital modulation methods – Binary
Phase Shift Keying (BPSK)
Infocom. 4. ea 2014. 09. 29.
12
Generation of BPSK
Carrier
signal
~
1
0
0
x
BPSK
1
+1
-1
t
Infocom. 4. ea 2014. 09. 29.
13
Digital modulation methods –
Constellation Diagram / BPSK
Infocom. 4. ea 2014. 09. 29.
14
Eye diagram as a basis for demodulation of
BPSK signal
Eye diagram
Received BPSK
signal
x
∫
comparator
1,0,1,0
Carrier
signal
Infocom. 4. ea 2014. 09. 29.
15
Digital modulation methods –Qadrature
Phase Shift Keying (QPSK)
• Two carriers: sine wave (Q) and cosine
wave (I)
• The modulated signal is the sum of the
two components
• One symbol is two bits
Infocom. 4. ea 2014. 09. 29.
16
Digital modulation methods –Qadrature
Phase Shift Keying (QPSK)
Infocom. 4. ea 2014. 09. 29.
17
Digital modulation methods –Qadrature
Phase Shift Keying (QPSK)
Infocom. 4. ea 2014. 09. 29.
18
Digital modulation methods –Qadrature
Phase Shift Keying (QPSK)
1
Infocom. 4. ea 2014. 09. 29.
19
Digital modulation methods –Qadrature
Amplitude Modulation (QAM)
• Two carriers: sine wave (Q) and cosine
wave (I)
• The modulated signal is the sum of the
two components
• Different amplitude and differnt phase
values for one symbol
• 16QAM means: one symbol is four bits
Infocom. 4. ea 2014. 09. 29.
20
Digital modulation methods –Qadrature
Amplitude Modulation (16QAM)
Infocom. 4. ea 2014. 09. 29.
21
Digital modulation methods –Qadrature
Amplitude Modulation (16QAM)
Infocom. 4. ea 2014. 09. 29.
22
Digital modulation methods –Qadrature
Amplitude Modulation with channel noise
Infocom. 4. ea 2014. 09. 29.
23
Why to use sophisticated modulations -- like
QAM?
• To put more bits into the standard medium
– twisted pair cable –ADSL, Gigabit Ethernet,
– coaxial cable – digital TV, HDTV, INTERNET,
– Radio – GSM, satellite TV and radio program
broadcasting
• Efficient use of spectum (the radio spectrum is
a limited resource)
Infocom. 4. ea 2014. 09. 29.
24
Bit error rate as a function of signal to noise ratio
using BPSK modulation
Infocom. 4. ea 2014. 09. 29.
25
Channel capacity as a function of signal to ratio at different
modulation system. The reference is the BPSK
Infocom. 4. ea 2014. 09. 29.
26
Multiplexing vs. switching
City A
Trunks for active calls only
City B
103
105
105
Infocom. 4. ea 2014. 09. 29.
27
Multiplexing principles
•
•
•
•
•
•
•
•
To reduce transmission costs
To utilize higher bandwidth
„Framing” and „packing” of information
TDM -- Time Division Multiplexing
FDM -- Frequency Division Multiplexing
CDMA -- Code Division Multiple Access
WDM -- Wavelength Division Multiplexing
Mixed
Infocom. 4. ea 2014. 09. 29.
28
TDM principles I. PCM frame
(Pulse Code Modulation)
4.50 ábra
125 µs
Infocom. 4. ea 2014. 09. 29.
29
TDM principles II. PDH hierarchy
Plesiochronous Digital Hierarchy
4.51 ábra
Infocom. 4. ea 2014. 09. 29.
30
TDM principles III. PDH hierarchy
4.51 ábra
Infocom. 4. ea 2014. 09. 29.
31
SDH hierarchy
• SDH – Synchronous Digital Hierarchy
• VC – Virtual Container (multiplexing level)
• STM-N Synchronous Transport Modules
(line signal level)
• POH – path overhead (control and
supervisory information)
• POH+Payload=VC
• A number of VCs can packaged into a
larger VC
Infocom. 4. ea 2014. 09. 29.
32
Transport modules
• RSOH – Regenerator Section Overhead
• MSOH – Multiplexer Section Overhead
• AU Pointer – Administrative Unit Pointer
(specifies where the payload starts)
• Duration of STM-1 module is 125 µs
Infocom. 4. ea 2014. 09. 29.
33
General Transport Module
4.56. ábra
Infocom. 4. ea 2014. 09. 29.
34
Infocom. 4. ea 2014. 09. 29.
35
Infocom. 4. ea 2014. 09. 29.
36
SDH Network elements
DXC – Digital Cross Connect
ADM – Add-drop Multiplexer
TM – Terminal multiplexer
Infocom. 4. ea 2014. 09. 29.
37
Example of a physical network
Infocom. 4. ea 2014. 09. 29.
38
FDM principles
Infocom. 4. ea 2014. 09. 29.
39
TDM/FDM channel architecture as used in GSM
Infocom. 4. ea 2014. 09. 29.
40
FDM in Cable TV network (US Standard)
Infocom. 4. ea 2014. 09. 29.
41
Variable bit-rate data transfer within TDM timeslots
Infocom. 4. ea 2014. 09. 29.
42
The Spread Spectrum Concept
Infocom. 4. ea 2014. 09. 29.
43
General Model of Spread Spectrum Digital Communication System
Infocom. 4. ea 2014. 09. 29.
44
Frequency_Hopping Spread Spectrum FHSS
Infocom. 4. ea 2014. 09. 29.
45
FHSS
• A number of channels are allocated for FH
• The transmitter operates in one channel at a time for
fixed time interval (Tc)
• During that interval, some number of bits or a fraction of
a bit are transmitted (signal elements)
• The time interval of signal elements Ts
• The sequence of the channels used is dictated by
spreading code
• Both transmitter and receiver use the same code to tune
into a sequence of channels in synchronisation
Infocom. 4. ea 2014. 09. 29.
46
Transmitter of the FHSS System
Infocom. 4. ea 2014. 09. 29.
47
Receiver of the FHSS System
Infocom. 4. ea 2014. 09. 29.
48
Slow FHSS using Multi Frequency Shift Keying Tc>Ts
(in this case 4 subfrequencies for 2 bits)
Infocom. 4. ea 2014. 09. 29.
49
Fast FHSS using Multi Frequency Shift Keying Tc<Ts
(in this case 4 subfrequencies for 2 bits)
Infocom. 4. ea 2014. 09. 29.
50
Example of Direct Sequence Spread Spectrum DSSS
Infocom. 4. ea 2014. 09. 29.
51
DSSS system Transmitter
Infocom. 4. ea 2014. 09. 29.
52
DSSS system Transmitter
Infocom. 4. ea 2014. 09. 29.
53
Comparison of FDM –TDM -- CDM
TDMA
FDMA
Infocom. 4. ea 2014. 09. 29.
54
Principle of WDM
Infocom. 4. ea 2014. 09. 29.
55
Principle of WDM
Infocom. 4. ea 2014. 09. 29.
56
Wavelenght Regions
Infocom. 4. ea 2014. 09. 29.
57
Infocom. 4. ea 2014. 09. 29.
58
Infocom. 4. ea 2014. 09. 29.
59
Prism refraction demultiplexing
Infocom. 4. ea 2014. 09. 29.
60
DWDM Ring Arhcitecure
Infocom. 4. ea 2014. 09. 29.
61
Switching techniques in public networks
Infocom. 4. ea 2014. 09. 29.
62
The Group Switch interconnects incoming and
outgoing time slots
Infocom. 4. ea 2014. 09. 29.
63
Time and space switches
Infocom. 4. ea 2014. 09. 29.
64
The principle of TST switching
Infocom. 4. ea 2014. 09. 29.
65
Group switch with 512 multiple position
Infocom. 4. ea 2014. 09. 29.
66
Connections to the local exchange
Infocom. 4. ea 2014. 09. 29.
67
Node for packet switching
Infocom. 4. ea 2014. 09. 29.
68
Packet node structure
Infocom. 4. ea 2014. 09. 29.
69
Connection oriented transfer phases:
Connection setup (setup packet with complete address, Logical Channel Number stored in each node
Data transmission (only LCN in the header)
Release
Connectionless transport:
Destination address in the header
Path selection in the nodes
Different packets have different delay
The order of received packets has no guarantee
Infocom. 4. ea 2014. 09. 29.
70
ATM cell switching principle
Fixed cell (packet) length – 53 bytes
5 octets header, 48 octet payload
Infocom. 4. ea 2014. 09. 29.
71
Why connection oriented packet switching?
• Connectionless – only best effort quality
(www = world wide waiting)
• Connection oriented – QoS guarantee is
possible
• Quality measures: delay, jitter, packet
loss.
Infocom. 4. ea 2014. 09. 29.
72
Content of ATM cell header
Infocom. 4. ea 2014. 09. 29.
73
Segmentation and
multiplexing of different
Services in cell based
systems
Infocom. 4. ea 2014. 09. 29.
74
The principle of ATM switching
Infocom. 4. ea 2014. 09. 29.
75
VP (Virtual Path „coarse level addressing”) and
VC (Virtual Channel „fine level addressing”)
Infocom. 4. ea 2014. 09. 29.
76
The structure of the ATM switch
Infocom. 4. ea 2014. 09. 29.
77
Signalling principles in circuit switching
Infocom. 4. ea 2014. 09. 29.
78
Signalling
flow in a
telephone
call
Infocom. 4. ea 2014. 09. 29.
79
Signalling for distributed supplementary services
or a mobile telephone call
Infocom. 4. ea 2014. 09. 29.
80
Signalling in packet switched networks
Infocom. 4. ea 2014. 09. 29.
81
Principles of Common Channel Signalling CCS
Infocom. 4. ea 2014. 09. 29.
82
Infocom. 4. ea 2014. 09. 29.
83
Circuit or packet switching???
• A rule of thumb:
– Band is cheap: circuit switching
– Processing is cheap: packet switching
• Distributed vs. centralized intelligence in the network
• Packet processing by 1016 b/s ????
Infocom. 4. ea 2014. 09. 29.
84
Photonic Fibre Switches
• In free-space devices, the light is focused from the input
fibre, deflected by a micro-mirror (typically several times)
and finally launched into the output fibre. The MicroElectro-Mechanical Systems (MEMS) technology is
mature and can produce switch matrices with up to
hundreds of input and output ports (128x128 or
256x256), low insertion loss (IL), very low cross talk, low
power consumption, millisecond switching speed, and
broadband operation. The mirrors can typically be
controlled electro-magnetically, electro-statically or by
piezoelectric actuators.
Infocom. 4. ea 2014. 09. 29.
85
Operational principle and example of 3D MEMS array
collimator
Infocom. 4. ea 2014. 09. 29.
86
Infocom. 4. ea 2014. 09. 29.
87
Infocom. 4. ea 2014. 09. 29.
88