Emerging Research Opportunities in Energy Manufacturing

Download Report

Transcript Emerging Research Opportunities in Energy Manufacturing

Emerging Research Opportunities in
Energy Manufacturing
G. Glenn Lipscomb
Chemical & Environmental Engineering, University of Toledo
NSF CMMI Research and Innovation Conference
Membrane and Module Manufacture
Tuesday, 4 January 2011
Atlanta, GA
Outline
Membrane Separations
 Flat Sheet/Spiral Wound Modules
 Hollow Fiber/Module Manufacture
 Module Efficiencies
 Large Applications

Desalination
Ashkelon SWRO Plant 100 million m3/y
http://www.water-technology.net/projects/israel/
Desalination
Review of the Desalination and Water Purification Technology Roadmap; http://www.nap.edu/catalog/10912.html
Desalination
100
33% Electric Conversion Efficiency
90
80
kWh/m 3
70
Desired Direction
MED MSF
60
50
40
30
RO+Boost RO
20
High flux
membrane
10
0
0.3
0.4
0.5
0.6
0.7
$/m
Wade, Desalination 136 (2001) 3–12
Busch & Mickols, Desalination 165 (2004) 299-312
0.8
3
0.9
1
1.1
Blue Energy – Reverse ED/PRO
http://www.wetsus.nl/
CO2 Capture
Pre-combustion
Oxygen ionic conducting
perovskite type membranes
Air Products
BP-Amoco-Praxair
Post-combustion
Polymeric CO2 selective
Membranes
MTR
Membrane Separations
http://www.environmentalexpert.com/stse_resulteach_product.aspx?cid=21795&idproduct=32902&codi=32902
Membrane Separations
http://www.egr.msu.edu/~steffe/handbook/fig643.html
Thin-film Composite Membranes
http://www.trisep.com/elements/Tech Support/How a Membrane is Made.pdf
Flat Sheet Membrane Manufacture
Baker, Membrane Technology and Applications, 2nd Edition, Wiley, 2004
Membrane Casting and Coating
Membrane casting
Membrane coating
http://www.gkss.de/institute/polymer_research/structure/geestacht/
equipment/membranes/index.html.en
Spiral Wound Modules
Seal
Collection Tube
Permeate
Reject
Feed
Case
Spiral Wound Modules
Spiral Wound Modules
Spiral Wound Modules
Spiral Wound Modules
“Leaf” or “Envelope”
Spiral Wound Modules
Spiral Wound Modules
Spiral Wound Modules
Spiral Wound Modules
3,417,870
6,190,557
Bray, Gulf General Atomic, 1968.
Hisada & Nishida, Nitto Denko, 2001.
Hollow Fiber Membranes
http://www.appliedmembranes.com/ultrafiltration_uf_systems.htm
http://www.matrix-membranes.com/
http://www.microfiltration.nl/hollow_fiber.php
Hollow Fiber Membrane Manufacture
United States Patent 6802973
http://eng.clima.org.cn/Machine/polyster_staple_fibre_production_line/polyeste
r_staple_fibre_production_line_84.html
Induced Phase Separation
Cooling Evaporation
Cd, T
Ri
Ro
Induced Phase Separation
Thermal (TIPS)
Diffusion (DIPS)
Hypothesis: Concentration
gradient predictor of pore size
and porosity asymmetry
Hollow Fiber Modules
Shell access
port
Distribution collar for
shell fluid
Bolts to attach
header to case
Fiber Bundle
Tubesheet
Lumen
access port
Case
Lumen
header
External Shell Ports
Lumen Port
Lumen Port
Seal
Lumen Headspace
5,598,874
Alei et al., MG Generon, 1997.
Module Inefficiencies
Flow Distribution Effects – Header
Lumen-side
Shell-side
Shell inlet port
J. Park & H. Chang, AIChEJ, 32, 1937 (1986).
Fiber bundle
Shell fluid
distribution collar
Flow Distribution Effects – Bundle
Lumen-side
Variation in transport properties
has similar effect
Shell-side
Flow Distribution Effects – Bundle
• From shell header
Axial flow
Distribution introduces RTD and cross flow regions
Shell-side Mass Transfer Coefficients
packing fraction=0.26, Sc=1000
CT Imaging
Fluid Introduction into Module
S.S. Concentration/Packing Comparison
Fiber packing field
Concentration packing field
Z = 4 cm from dialysate feed port
Fluid Introduction into Module
CFD Simulations
CFD Simulations
Challenges




Increase membrane line rates
Metallic, ceramic, mixed matrix materials
Efficient counter-current contacting
Linear scaling/larger modules
http://www.natcogroup.com/