25–1 Hormones and Plant Growth

Download Report

Transcript 25–1 Hormones and Plant Growth

Biology

Copyright Pearson Prentice Hall

Slide 1 of 42 End Show

25 –1 Hormones and Plant Growth

Copyright Pearson Prentice Hall

Slide 2 of 42 End Show

25 –1 Hormones and Plant Growth Patterns of Plant Growth

Patterns of Plant Growth

Biologists have discovered that plant cells send signals to one another that indicate when to divide and when not to divide, and when to develop into a new kind of cell.

Slide 3 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Patterns of Plant Growth

One difference between growth in plants and animals is that most animals stop growing once they reach adulthood.

In contrast, plants continue to grow new needles, add new wood, and produce cones or new flowers.

The secrets of plant growth are found in meristems, regions of tissue that can produce cells that later develop into specialized tissues.

Slide 4 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Patterns of Plant Growth

Plants grow in response to environmental factors such as light, moisture, temperature, and gravity.

Specific chemicals direct, control, and regulate plant growth.

Slide 5 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Plant Hormones What are plant hormones?

Copyright Pearson Prentice Hall

Slide 6 of 42 End Show

25 –1 Hormones and Plant Growth Plant Hormones

Plant Hormones

A

hormone

is a substance that is produced in one part of an organism and affects another part of the same individual.

Slide 7 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Plant Hormones Plant hormones are chemical substances that control a plant's patterns of growth and development and its responses to environmental conditions.

Slide 8 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Plant Hormones Hormone producing cells

The portion of an organism affected by a particular hormone is known as its

target cell

or target tissue.

Movement of hormone Target cells Slide 9 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Plant Hormones

To respond to a hormone, the target cell must contain a receptor to which the hormone binds.

If the receptor is present, the hormone can influence the target cell by: • • changing its metabolism affecting its growth rate • activating the transcription of certain genes

Slide 10 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Plant Hormones

Cells that do not contain receptors are generally unaffected by hormones.

Different kinds of cells may have different receptors for the same hormone.

As a result, a single hormone may affect two different tissues in different ways.

For example, a particular hormone may stimulate growth in stem tissues but inhibit growth in root tissues.

Slide 11 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Plant Hormones How do auxins, cytokinins, gibberellins, and ethylene affect plant growth?

Slide 12 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Auxins

Auxins

Charles Darwin and his son Francis carried out the experiment that led to the discovery of the first plant hormone.

They described an experiment in which oat seedlings demonstrated a response known as

phototropism

—the tendency of a plant to grow toward a source of light.

Slide 13 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Auxins

In the experiment, they placed an opaque cap over the tip of one of the oat seedlings. This plant did not bend toward the light, even though the rest of the plant was uncovered.

Copyright Pearson Prentice Hall

Slide 14 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

However, if an opaque shield was placed a few centimeters below the tip, the plant would bend toward the light as if the shield were not there.

Copyright Pearson Prentice Hall

Slide 15 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

The Darwins suspected that the tip of each seedling produced substances that regulated cell growth.

Forty years later, these substances were identified and named

auxins

.

Slide 16 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Auxins Auxins are produced in the apical meristem and are transported downward into the rest of the plant. They stimulate cell elongation.

Copyright Pearson Prentice Hall

Slide 17 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

When light hits one side of the stem, the shaded part develops a higher concentration of auxins.

This change in concentration stimulates cells on the dark side to elongate.

Copyright Pearson Prentice Hall

Slide 18 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

As a result, the stem bends away from the shaded side and toward the light.

Recent experiments have shown that auxins migrate toward the shaded side of the stem.

Copyright Pearson Prentice Hall

Slide 19 of 42 End Show

25 –1 Hormones and Plant Growth Auxins Auxins and Gravitropism

Auxins are also responsible for

gravitropism

—the response of a plant to the force of gravity.

Copyright Pearson Prentice Hall

Slide 20 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

Auxins build up on the lower sides of roots and stems. In stems, auxins stimulate cell elongation, helping turn the trunk upright.

Copyright Pearson Prentice Hall

Slide 21 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

In roots, their effects are exactly the opposite. There, auxins inhibit cell growth and elongation, causing the roots to grow downward.

Copyright Pearson Prentice Hall

Slide 22 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

Auxins also influence how roots grow around objects in the soil.

If a growing root is forced sideways by an obstacle, auxins accumulate on the lower side of the root.

Slide 23 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Auxins

High concentrations of auxins inhibit the elongation of root cells.

Uninhibited cells on the top elongate more than auxin-inhibited cells on the bottom and the root grows downward.

Slide 24 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Auxins Auxins and Branching

Auxins also regulate cell division in meristems.

Copyright Pearson Prentice Hall

Slide 25 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

As a stem grows in length, it produces lateral buds.

A

lateral bud

is a meristematic area on the side of a stem that gives rise to side branches.

Copyright Pearson Prentice Hall

Slide 26 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

Most lateral buds do not start growing right away.

The reason for this delay is that growth at the lateral buds is inhibited by auxins.

Copyright Pearson Prentice Hall

Slide 27 of 42 End Show

25 –1 Hormones and Plant Growth Auxins

Because auxins move out from the apical meristem, the closer a bud is to the stem's tip, the more it is inhibited.

This phenomenon is called

apical dominance

.

Copyright Pearson Prentice Hall

Slide 28 of 42 End Show

25 –1 Hormones and Plant Growth Auxins Apical meristem removed

When the apical meristem is removed, the concentration of auxin is reduced and the side branches begin to grow more rapidly.

Slide 29 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Auxins Auxinlike Weed Killers

Chemists have produced compounds that mimic the effects of auxins.

Since high concentrations of auxins inhibit growth, many of these are used as

herbicides

— compounds toxic to plants.

Slide 30 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Cytokinins

Cytokinins

Cytokinins

are plant hormones produced in growing roots and developing fruits and seeds.

Cytokinins delay the aging of leaves and play important roles in early stages of plant growth.

Slide 31 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Cytokinins In plants, cytokinins stimulate cell division and the growth of lateral buds, and cause dormant seeds to sprout.

Slide 32 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Cytokinins

Cytokinins and auxins often produce opposite effects.

• Auxins stimulate cell elongation.

• Cytokinins inhibit cell elongation and cause cells to grow thicker.

• Auxins inhibit the growth of lateral buds.

• Cytokinins stimulate lateral bud growth.

Slide 33 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Cytokinins

Recent experiments show that the rate of cell growth in most plants is determined by the ratio of the concentration of auxins to cytokinins.

In growing plants, therefore, the relative concentrations of auxins, cytokinins and other hormones determine how the plant grows.

Slide 34 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Gibberellins

Gibberellins

A

gibberellin

is a growth-promoting substance in plants.

Gibberellins produce dramatic increases in size, particularly in stems and fruit.

Gibberellins are also produced by seed tissue and are responsible for the rapid early growth of many plants.

Slide 35 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Hormones and Plant Growth Ethylene

Ethylene

In response to auxins, fruit tissues release small amounts of the hormone ethylene. Ethylene

to ripen.

is a plant hormone that causes fruits Commercial producers of fruit sometimes use this hormone to control the ripening process.

Slide 36 of 42 End Show

Copyright Pearson Prentice Hall

25 –1 Continue to:

- or -

Click to Launch:

Copyright Pearson Prentice Hall

Slide 37 of 42 End Show

25 –1

The tendency of a plant to grow toward a source of light is a. gravitropism.

b. phototropism.

c. meristematic growth.

d. apical dominance.

Slide 38 of 42 End Show

Copyright Pearson Prentice Hall

25 –1

A plant part in which hormones are produced is a. the apical meristem.

b. a target cell.

c. a hormone receptor.

d. xylem.

Slide 39 of 42 End Show

Copyright Pearson Prentice Hall

25 –1

If you snip off the tip of a stem, the a. plant grows tall and narrow.

b. plant dies.

c. side branches begin to grow more quickly.

d. stem stops growing.

Slide 40 of 42 End Show

Copyright Pearson Prentice Hall

25 –1

Ethylene is a plant hormone that causes a. plant cells to grow longer.

b. flowers to develop.

c. fruit to ripen.

d. roots to grow downward.

Copyright Pearson Prentice Hall

Slide 41 of 42 End Show

25 –1

The herbicides produced by chemists have a structure that is similar to a. auxins.

b. gibberellins.

c. cytokinins.

d. ethylene.

Slide 42 of 42 End Show

Copyright Pearson Prentice Hall

END OF SECTION