Slides - Rencontres de Blois

download report

Transcript Slides - Rencontres de Blois

Results from Borexino

26th Rencontres de Blois - 2014

Marco G. Giammarchi Istituto Nazionale di Fisica Nucleare Via Celoria 16 – 20133 Milano (Italy) [email protected]

http://pcgiammarchi.mi.infn.it/giammarchi/

On behalf of the BOREXINO Collaboration Reporting on the Solar Results only

1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future

Rencontres de Blois - May 2014 1

Milano München Heidelberg Hamburg Mainz Gran Sasso Perugia Genova Napoli TU Dresden Jagiellonian Kraków

the Borexino Collaboration

JINR Dubna Virginia Tech Houston Paris Moscow Los Angeles Princeton UMass Amherst

Rencontres de Blois - May 2014

St. Petersburg Kurchatov Moscow

2

We believe we understand the Sun

pp-cycle >99% energy production 5 ν species CNO-cycle <1% energy production 3 ν species Neutrinos are produced in several reactions in both cycles Rencontres de Blois - May 2014

1. BOREXINO

Borexino is a low background Neutrino Detector for sub-MeV solar Neutrino (and other) studies Detecting Solar Neutrinos, Geo-neutrinos and other rare phenomena

1. BOREXINO

2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5. Future • Main detection reaction: elastic scattering in a scintillator • Low interaction rates: 0.1/1 event/day/ton of target mass • Low energy (mostly <10 MeV, better if <2 MeV) • Low threshold and low background (radiopurity) 

e

  

e

 • Underground location to shield from cosmic rays (10 6 reduction of muon flux) Rencontres de Blois - May 2014 4

Experimental site

Abruzzo, Italy 120 Km from Rome External Labs

Laboratori Nazionali del Gran Sasso Assergi (AQ) Italy 1400m of rock shielding ~3800 m.w.e.

Borexino Detector and Plants

Rencontres de Blois - May 2014 5

The Borexino Detector

Neutrino electron scattering 

e

> 

e

● ●

Stainless Steel Sphere:

2212 PMTs ~ 1000 m 3 buffer of pc+dmp (light queched)

Scintillator:

270 t PC+PPO (1.4 g/l)

Nylon vessels:

(125 μm thick)

Inner: 4.25 m Outer: 5.50 m (radon barrier) Carbon Steel Plates

Water Tank:

γ and n shield μ water Č detector 208 PMTs in water 2100 m 3 20 20 legs legs Rencontres de Blois - May 2014 6

Filling phase of the Borexino detector (2007, Laboratorio del Gran Sasso) 11 m Photomultipliers Scintillator Water Rencontres de Blois - May 2014 Nylon Vessels

Solar Neutrinos: the predicted spectrum

,Borexino Rencontres de Blois - May 2014

Study of Solar Neutrinos  Solar Neutrino Problem  Neutrino Oscillations Rencontres de Blois - May 2014

Neutrino Oscillation Solution (W. Hiroko’s talk at Neutel 2013) Large Mixing Angle + MSW mechanism in the Sun

Global, 3-lepton flavor analysis

m

2 12  sin 2  12 sin 2  13  7 .

54   0 0 .

.

26 22   10  5  0 .

307   0 .

018 0 .

016

eV

2  0 .

0241  0 .

0025 Rencontres de Blois - May 2014

However:

before Borexino, only radiochemical experiments could observe solar neutrinos below 1 MeV. Real-time experiments were sensible mostly to > 5 MeV Open Issues Rencontres de Blois - May 2014

1. BOREXINO

2. Be-7 flux measurement

2. Be-7 flux measurement E ν = 862 keV ( Φ SSM = 4.8 · 10 monoenergetic 9 ν s -1 cm 2 )

3. B-8 measurement 4. pep detection and CNO limit 7

Be

e

  7

Li

 

e

5. Future

ν e ν x Electron recoil spectrum

x

e

  

x

e

 (

x

e

,  ,  )

Cross Section

10 -44 cm 2 (@ 1 MeV)

Rencontres de Blois - May 2014 12

46 .

0  1 .

5

stat

  1 1 .

6 .

5

c

/

d

 100

t

Digitare l'equazione qui.

Rencontres de Blois - May 2014  0 .

001  0 .

0012

st

 0 .

007

syst

LMA    4 .

84  0 .

24   10 9

cm

 2

s

 1

3. B-8 measurement

Analysis with 3 MeV threshold Borexino rate : ≈ 0.2 cpd / (100 tons) Backgrounds: • Muons, Neutrons • External background • Fast cosmogenics • C-10, Be-11 • Tl-208,Bi-214 1. BOREXINO 2. Be-7 flux measurement

3. B-8 measurement

4. pep detection and CNO limit 5. Future Rencontres de Blois - May 2014 14

R

 0 .

22  0 .

04 (

stat

)  0 .

01 (

syst

)

cpd

/ 100

t

(

above

3

MeV

) Rencontres de Blois - May 2014

4. pep detection and CNO limit

Pep reaction

p + e

-

+ p

d +

 e 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement

4. pep detection and CNO limit

5. Future Monoenergetic 1.44 MeV neutrinos Rencontres de Blois - May 2014 16

Rencontres de Blois - May 2014

C-11 reduction strategy: • Threefold coincidence (muon,neutron,C11) • Pulse shape discrimination electron/gamma/positron (Ps formation) • Multivariate fit with also energy and position First pep measurement and the best CNO limit 

pep

(

MSW

LMA

)  ( 1 .

6  0 .

3 )  10 8

cm

 2

s

 1 

CNO

(

MSW

LMA

)  7 .

7  10 8

cm

 2

s

 1 ( 95 %

CL

) Rencontres de Blois - May 2014

Solar neutrino components measured by Borexino ,Borexino Rencontres de Blois - May 2014

Neutrino Oscillations properties measured by Borexino Vacuum Regime Matter Regime Solar electron neutrino survival probability as a function of neutrino energy LMA-MSW with standard neutrino interactions Rencontres de Blois - May 2014

6. Future (summary)

Borexino Phase II (solar neutrinos): • pp detection • CNO study 1. BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit

5. Future

Cycles of Purification (Water Extraction) : • Reduce 85 Kr and 210 Bi affecting the pep and CNO analyses • Kr background reduced to a negligible rate • Bi-210 reduced (tens of counts/day 100 tons) and possibly studied by means of the time evolution of Po-210 rate.

Rencontres de Blois - May 2014 21

CNO detection

CNO reactions are responsible for less than 1% of the Sun energy generation However, this cycle should be dominant for higher mass stars (higher temperatures) Given their small flux and low energy, neutrinos from CNO have never been measured directly.

pp detection

They make up more than 90% of the total flux and have never been directly observed.

Main source of background is C-14 and its pileup effect.

C-14 spectral shape and pileup Rencontres de Blois - May 2014 22

Thank you for your attention (& selected bibliography)

• G. Alimonti et al., Nucl. Instr. & Methods A600 (2009) 568 • C. Arpesella et al., Phys. Lett. B 568 (2008) 101 • C. Arpesella et al., Phys. Rev. Lett. 101 (2008) 091302 • G. Bellini et al., Phys. Rev. Lett. 107 (2011) 141302 • G. Bellini et al., Phys. Lett. B 707 (2012) 22 • G. Bellini et al., Phys. Rev. D 82 (2010) 033006 • G. Bellini et al., Phys. Lett. B 687 (2010) 299 • G. Bellini et al., Phys. Lett. B 722 (2013) 295 • G. Bellini et al., Phys. Rev. Lett 108 (2012) 051302 Rencontres de Blois - May 2014 Detector Be-7 B-8 Geo ν pep

Backup Slides

Rencontres de Blois - May 2014 24

5. Geoneutrinos

AntiNeutrinos emitted in beta decays of naturally occurring radioactive isotopes in the Earth’s crust and mantle Moderate Nuclear Reactors bkgd at LNGS Detection by Inverse Beta Decay (1.8 MeV thr.) 

e

p

n

e

 Unoscillated Geo-nu and nuclear reactor nu 1

.

BOREXINO 2. Be-7 flux measurement 3. B-8 measurement 4. pep detection and CNO limit 5.

Geoneutrinos

6. Future Unoscillated Geo-nu Positron-Gamma (2.2 MeV) delayed coincidence Rencontres de Blois - May 2014 25

Search for positron/neutron-capturedelayed coincidences in the Borexino detector Main background sources: • Li-9, He-8, untagged muons, accidentals……… • And of course nuclear reactors • First observation published in 2010 New analysis based on 1353 days of data Phys. Lett. B 722 (2013) 295 Reactor antineutrinos at LNGS Rencontres de Blois - May 2014

1353 days in Borexino: antineutrino geo analysis Nuclear Reactor component : Found : 21 events above geo endpoint Expected : 22.0 +- 1.6

Geoneutrinos vs Reactor neutrinos: Free parameters - Weight of Geo nu - Weight Reactor nu Th/U = 3.9 fixed (condhritic value) 68.27%, 95.45%, 99.73% Confidence level contour plots for geo and reactor neutrinos Extreme expectations of BSE (Bulk Silicate Earth) model Reactor signal expectation (1 TNU = 1 Terrestrial Neutrino Unit = 1 event/year/10 32 protons) Rencontres de Blois - May 2014 27

Best fit values: Geofluxes

N geo

  14 .

3 

N reac

 31 .

2   7 .

0 6 .

1 4 .

4 

S geo

 ( 38 .

8  12 .

0 )

S rea

 84 .

5   19 16 .

3 .

9   (

U

) (

Th

)    2 .

4  2 .

0   0 .

7  0 .

6    10 6 10 6

cm

2

s

 1

cm

2

s

 1

TNU TNU

If U,Th contributions are left free:   (

U

) (

Th

)     2 .

1 2 .

6   1 .

5 3 .

1    10 6  10 6

cm

2

s

 1

cm

2

s

 1 Rencontres de Blois - May 2014 28

Going for pep and CNO:

11

C tagging

γ

n β

μ

  12

C

   11

C

n

τ (n capture): ~250μs The main background for pep and CNO analysis is 11 C, a long lived (τ=30min) cosmogenic β + emitter with ~1MeV end-point (shifted to 1-2MeV range)

n

p

d

 

2 .

2

MeV

11

C

11

B

e

  

e

τ ( 11 C): ~30min 1.

11 C Production Channels: [Galbiati et al., Phys. Rev. C71, 055805, 2005] 95.5% with n : (X,X+ n ) 2.

X = γ, n, p, π ± , e ± , μ.

4.5% invisible : (p,d); (π + ,π 0 +p).

11 C rate = (28.5 ± 0.5) cpd exp. pep rate ~ 3cpd Rencontres de Blois - May 2014 29

Going for pep and CNO: positronium

Electron/Positron discrimination due to Ps formation in positron events (D. Franco, G. Consolati and D. Trezzi, Phys. Rev. C 83 (2011) 015504 Rencontres de Blois - May 2014 30

A. The Cr-51 source, with an activity of ~10 Mci Obtained by irradiation of Cr-50 . 3-months experiment to be performed in 2015 B. A Ce-144 antineutrino source can be used. Due to the antineutrino tag, the activity could be much smaller, in the 80 kCi range. C. The Ce-144 source positioned at the center of the detector Rencontres de Blois - May 2014 31

Short distance neutrino Oscillations with BoreXino (SOX)

Experimental anomalies which are difficult to accomodate in a simple 3-flavor scenario A fourth (sterile) neutrino? («Gallium», «Reactor», «LSND-MiniBoone» anomalies) Borexino can be used to perform a short baseline experiment with neutrino source Exploration of parameters in the plane L/E of the order of eV 2 (  2

m

14 , sin 2 2  14 ) Rencontres de Blois - May 2014 32

Neutrino Oscillations

n

l

= 3 å

i

= 1

U li

n

i

Citation: K. Nakamura et al. (Particle Data Group), JP G 37 , 075021 (2010) and 2011 partial update for the 2012 edition (URL: http:/ / pdg.lbl.gov) PMNS neutrino mixing matrix, analogous to CKM matrix for quarks sin 2 (2 θ 12 ) = 0.861

+ 0.026

− 0.022

∆ m 2 21 = (7.59+ -0.21) × 10 − 5 sin 2 (2 θ 23 ) > 0.92

∆ m 2 32 = (2.43

[i ] ± 0.13) × 10 − 3 sin 2 (2 θ 13 ) < 0.15, CL = 90% eV 2 eV Solution of the Solar Neutrino Problem is neutrino oscillation with matter (MSW) effect at Large Mixing Angle (LMA) 2 [j ] For excited leptons, see Compositeness Limits below.

Mass m > 45.0 GeV, CL = 95% Mass m > 39.5 GeV, CL = 95% (Dirac) (Majorana) Mass m > 90.3 GeV, CL = 95% (Dirac ν L coupling to e, µ, τ ; conservative case(τ )) Mass m > 80.5 GeV, CL = 95% (Majorana ν L coupling to e, µ, τ ; conservative case(τ )) NOTES [a] This is the best limit for the mode e − disappeara nce” is 6.4 × 10 24 yr.

→ ν γ. The best limit for “ electron [b] See the “ Note on Muon Decay Parameters” in the µ Particle Listings for de finitions and details.

[c] P µ is the longitudinal polarization of the muon from pion decay. In standard V − A theory, P µ = 1 and ρ = δ = 3/ 4.

[d] This only includes events with the γ energy > 10 MeV. Since the e − and e − ν e ν µ ν e ν µ γ modes cannot be clearly separated, we regard the latter mode as a subset of the former.

[e] See the relevant Particle Listings for the energy limits used in this mea surement.

[f ] A test of additive vs. multiplicative lepton family number conservation.

[g] Basis mode for the [h] L ± τ .

mass limit depends on decay assumptions; see the Full Listings.

[i ] The limit quoted corresponds to the projection onto the sin 2 (2 θ 23 ) axis of the 90% CL contour in the sin 2 (2 θ 23 ) − ∆ m 2 32 plane.

[j ] The sign of ∆ m 2 32 the absolute value.

is not known at this time. The range quoted is for HTTP:/ / PDG.LBL.GOV

Page 10 Created: 6/ 16/ 2011 12:05 33