Superfluidity with disorder in a thin film of quantum gas

Download Report

Transcript Superfluidity with disorder in a thin film of quantum gas

Disordered superfluid thin films with cold
atoms
πœ‡πΏ
πœ‡π‘…
S. Krinner, D. Stadler, J. Meineke, J.-P. Brantut and T. Esslinger
Institute for Quantum Electronics, ETH Zürich
Motivation
Two – dimensional
superconducting thin films
Superconductor – Insulator
Quantum Phase Transition
Control Parameter:
β€’ Disorder Strength
β€’ Film Thickness
β€’ Magnetic Field
Mechanism: Bosonic vs Fermionic
A. Goldman, N. Markovic; Physics Today 51, 11 (1998)
V. Ganthmaker, V. Dolgopolov, Physics-Uspekhi 53, 1 (2010)
Experimental Setup
Degenerate Fermi Gas
β€’ Atom number: 105 6Li atoms
β€’ Temperature: 0.2 TF
Experimental Setup
Degenerate Fermi Gas
β€’ Atom number: 105 6Li atoms
β€’ Temperature: 0.2 TF
β€’ Tunable Interactions
Experimental Setup
Geometry: Mesoscopic two-dimensional channel connected to two reservoirs
πœ‡πΏ
πœ‡π‘…
J.-P. Brantut et al., Science 337, 1069 (2012)
Inducing a chemical potential bias
Symmetric position
Inducing a chemical potential bias
Symmetric position
Shift trap (slow)
Inducing a chemical potential bias
Symmetric position
Shift trap (slow)
Evaporative cooling
Inducing a chemical potential bias
Symmetric position
Shift trap (slow)
Evaporative cooling
Shift trap back (fast)
Projection of a disordered potential
πœ‡πΏ
πœ‡π‘…
Tuning parameter: Disorder strength
Length scales
𝜎
Disorder: Correlation length 𝜎
Length scales
𝜎
Disorder: Correlation length 𝜎
BEC: Molecule pair size d β‰ͺ 𝜎
Length scales
𝜎
Disorder: Correlation length 𝜎
Unitary Fermi Gas: pair size d ~ 𝜎
BEC - Resistance of disordered thin film
S. Krinner et al., PRL 110, 100601 (2013)
BEC - Breakdown of superfluid flow
S. Krinner et al., PRL 110, 100601 (2013)
BEC - Breakdown of superfluid flow
𝜎 = 0.29 πœ‡π‘š
πœ‡ = 400 𝑛𝐾
π‘Ž = 3500 π‘Ž0
S. Krinner et al., PRL 110, 100601 (2013)
BEC - Breakdown of superfluid flow
Classical Percolation
Threshold: 𝑉/πœ‡ = 1.92
S. Krinner et al., PRL 110, 100601 (2013)
𝜎 = 0.29 πœ‡π‘š
πœ‡ = 400 𝑛𝐾
π‘Ž = 3500 π‘Ž0
Transport properties – Unitary Fermi Gas
Transport properties – Unitary Fermi Gas
𝜎 = 0.72 πœ‡π‘š
πœ‡ = 550 𝑛𝐾
π‘Ž=∞
Transport properties – Unitary Fermi Gas
Percolation threshold
for pairs
𝜎 = 0.72 πœ‡π‘š
πœ‡ = 550 𝑛𝐾
π‘Ž=∞
Insitu observation of a disordered Fermi Gas
20ΞΌm
Increasing disorder strength
Insitu observation of a disordered Fermi Gas
V
H
V
H
V
Increasing disorder strength
H
Percolation analysis
Percolation analysis
Level 𝑛
Percolation analysis
Level 𝑛
Percolation analysis
Level 𝑛
Percolation analysis
Level 𝑛
Percolation analysis
Level 𝑛
Percolation analysis
Level 𝑛
Percolation analysis
Level 𝑛
𝑉/πœ‡ = 1.4
Percolation analysis
Level 𝑛
𝑉/πœ‡ = 1.4
𝑉/πœ‡ = 0.2
Percolation analysis
Percolation analysis
Fragmented
Regime
Smooth
Regime
Pair percolation
threshold
Conclusion – Unitary Fermi Gas
Increasing
Disorder
(arXiv soon)
Outlook: Thermoelectricity
J.-P. Brantut et al., arXiv: 1306.5754
Lithium Team
J.-P. Brantut
S. Krinner
D. Stadler
J. Meineke
T. Esslinger
We acknowledge fruitful discussions with: J. Blatter, T.Bourdel, A. Georges, T.
Giamarchi, V. Josse, C. Kollath, P. Lugan, C. Mueller, L.Pollet, T. Roscilde, D. Shahar, V.
Shenoy, A. Zheludev and W. Zwerger.
Summary
1) Transport measurements:
Classical Percolation
Threshold: 𝑉/πœ‡ = 1.92
S. Krinner et al., PRL 110, 100601 (2013)
2) Insitu study
Percolation threshold
for pairs
Length scales
𝜎
Disorder: Correlation length 𝜎 = 0.72 ΞΌπ‘š
Unitary Fermi Gas:
Pair size d ~ π‘˜π‘“ βˆ’1 ~ 𝜎
Coherence length ΞΎ ~ π‘˜π‘“ βˆ’1 ~ 𝜎
Disorder-induced breakdown of superfluid flow
Classical Percolation
Threshold: 𝑉/πœ‡ = 1.92
S. Krinner et al., arxiv:1211.7272 (2012), accepted in PRL
Length scales
Outlook
Strongly correlated transport through projected structures
Current flow
Exponential decay of atom number imbalance Δ𝑁 = 𝑁left βˆ’ 𝑁right
C
𝜏 = 𝑅𝐢 = 170ms
0.1
R
0
0.4
0.8
time (s)
𝑑
1
Δ𝑁 =
Δ𝑁
𝑑𝑑
𝑅𝐢
Finite resistance although transport through channel is ballistic!?
Conduction as transmission
Conduction is transmission from one reservoir to another (Landauer)
πœ‡πΏ
πœ‡π‘…
Conduction as transmission
Conduction is transmission from one reservoir to another (Landauer)
πœ‡πΏ
πœ‡π‘…
Contact resistance: Reflection at the contacts
Conduction as transmission
Conduction is transmission from one reservoir to another (Landauer)
πœ‡πΏ
πœ‡π‘…
Contact resistance: Reflection at the contacts
Dissipation takes place deeply inside the reservoirs
J.-P. Brantut et al., Science 337, 1069 (2012)
Why do we not see Josephson oscillations?
Length scales :
Channel: ~ 30 µm
Coherence length: ~ 1µm
Time scales :
Transport time: ~20 ms
Chemical potential diff.: ~ 3 kHz
The current has no chance to reverse
Disorder-induced breakdown of superfluid flow
Disorder-induced breakdown of superfluid flow
Drift velocity
Density independent quantity: Drift velocity: vd= 𝐼/𝑛𝑙
Disorder-induced breakdown of superfluid flow
Classical percolation threshold
Classical Percolation
Threshold: 𝑉/πœ‡ = 1.92
Disorder-induced breakdown of superfluid flow
𝑅𝐡𝐸𝐢 πœπ‘ŠπΌπΉ 𝐢𝐡𝐸𝐢
=
π‘…π‘ŠπΌπΉ 𝜏𝐡𝐸𝐢 πΆπ‘ŠπΌπΉ
Correlation energy Δ§2/π‘šπœŽ2
Classical Percolation
Threshold: 𝑉/πœ‡ = 1.92
S. Krinner et al., arxiv:1211.7272 (2012)
Thermodynamics
External parameter
(gate potential V)
LDA:
Gibbs-Duhem:
Intensive quantity
(temp. T, pressure P)
πœ‡(π‘Ÿ) = πœ‡0 βˆ’ 𝑉(π‘Ÿ) β†’ π‘‘πœ‡ = βˆ’π‘‘π‘‰
𝑛 πœ‡, 𝑇0 π‘‘πœ‡ = 𝑑𝑃 β†’ 𝑃 = βˆ’
𝑛(𝑉, 𝑇0 ) 𝑑𝑉
measure
β€’ Transform gate potential into pressure
«pressure thermometer»
Ku et. al., Science 335, 563-567 (2012)
What is Resistance ?
Normal conductor
Limit of ballistic conductor
R≠0
R=0
U
I=
R
R→0
?
Iβ†’βˆž
Landauer Approach
What is Resistance ?
Landauer Approach – Conduction as Transmission
𝑉
πœ‡
πœ‡ βˆ’ 𝑒𝑉
R=0
β€’ Conduction is transmission from one reservoir to the other.
β€’ Prediction: finite resistance for a perfect conductor !
Imry, Landauer
Rev. Mod. Phys. 71, S306–S312 (1999)
Ohmic conduction
β€’ Current at each point in
time
β€’ Slope gives cond. G
β€’ 2 different confinements
3.2 and 3.9 kHz
Ultracold Fermi gases: Vortices
Current
101 Years ago…
Resistance
«Mercury practically zero»
Delft, Kes
Physics Today 63, 38-42 (2010)
Temperature
β€’ Kamerlingh-Onnes observes «unmeasurably
small resistance»
οƒ  Discovery of «superconductivity»
β€’ But: no such measurements in ultracold Fermi gases!
Looking in-situ
Intrinsic transport property
Thermodynamic scale
Drift velocity
Pressure
𝑉𝑑 = 𝐼/𝑛𝑙
𝑃=βˆ’
𝑛(𝑉, 𝑇0 ) 𝑑𝑉
Ku, Science 335, 563-567 (2012)
Nascimbène, Nature 463, 1057-1060 (2010)
Looking in-situ
Intrinsic transport property
Thermodynamic scale
Drift velocity
Normalized Pressure
𝑉𝑑 = 𝐼/𝑛𝑙
𝑃
𝑃0
Ideal 2d Fermi gas
Ku, Science 335, 563-567 (2012)
Nascimbène, Nature 463, 1057-1060 (2010)