Diapositiva 1

Download Report

Transcript Diapositiva 1

Ciencia y Tecnología del Color Seminario 2009

Viability of Dyeing of Natural and Synthetic Fibers with Nanopigments in Supercritical CO

2

Bàrbara Micó, Verónica Marchante, Francisco Martínez-Verdú, Eduardo Gilabert

ÍNDEX

Introduction

 

Supercritical CO 2 Dyeing in supercritical CO 2

Nanopigments and nanoclays

     

Objectives State of the art

Colorant selection

Fibres

Process variables Challenges Solutions / Future perspectives Advantages of using Nanopigments References / Acknowledgements

INTRODUCTION

Supercritical CO 2

: Solvent  Properties  Low cost  Non-Toxic  Density: liquid  Viscosity: Gas  Recycling up to 90%  Inert  Non-explosive  Low critical point  Pressure: 73.858 ± 0.005 bar  Temperature: 31.05 ± 0.05 ºC

DYEING IN SUPERCRITICAL CARBON DIOXIDE

 ADVANTAGES  No waste water (problem in textile industry)  No require additives  No final drying  Recycling  Solvent  Colorants  Environmental friendly  DRAWBACKS  Investment  Solve colorants  Time of process

NANOPIGMETS

 NANONATERIALS: since 90’s  Hybrid materials consisting of organic dyes and layered silicate nanoparticles  Nanoclay: particle size < 20nm  Ionic-exchange reaction: Colorant + Nanoclay (H + )  Nanoclays: Smectite group  Montmollonite: laminar  Sepiolite: acicular

Scheme of nanopigments’ synthesis at laboratory

Nanoclay H 2 O deionized Sieving Dispersion +

APLICATIONS: - Coloration of Plastics - Printing Inks - Functional materials

Colorant solution Ionic Exchange Washing and Filtering Drying

Schematic representation of clay sheet, dye molecule (methylene blue) and blue Nanopigment.

Capa de arcilla Azul de metileno Capa de arcilla

CH 3 CH 3 N CH 3 N CH 3 N S S N CH 3 N CH 3 CH 3 N CH CH 3 3 N CH 3 CH 3 N CH 3 N S S N CH 3 N CH 3 CH 3 N CH 3 CH 3 N CH 3 CH 3 N CH 3 S N S N CH 3 N CH 3 N CH CH 3 CH 3 CH 3 N 3 CH 3 S N N N S CH 3 CH 3 N CH 3 CH 3 N CH 3 CH 3 N CH CH 3 3 N CH 3 S CH 3 N N N S CH 3 CH N CH 3 CH 3 CH 3 3 N CH 3 S N CH 3 N N S CH 3 N CH 3 CH 3 CH 3 CH 3 N CH 3 S CH 3 N N CH 3 N N S CH 3 N CH CH 3 3 N CH 3 CH 3 N CH CH 3 N 3 CH 3 S N N S CH 3 N CH CH 3 3 N CH 3 CH 3 N CH 3 CH 3 N CH 3 N CH 3 S N N CH 3 CH 3 N CH 3 CH 3 N CH 3 CH 3 N CH 3 N S S N CH 3 N CH 3 CH 3 N CH CH 3 3 N CH 3 CH 3 N CH 3 N S S N CH 3 N N CH 3 CH 3 CH 3

OBJECTIVES: PROJECT AITEX-AINIA-UA 2. SELECTION /MATERIAL DEVELOPMENT 2.1. POLIMERS 2.2. COLORANTS 2.3.

ANTIBACTERIAL AGENTS 3. DISSOLUTION OF MATERIALS IN SC CO 2 4. POLYMER IMPREGNATION IN SC-CO 2 6. REENGINIEERING 5. CHARACTERIZE TREATED MATERIAL WITH SC-CO 2 7. VIABILITY / ECONOMIC

STATE OF THE ART

Colorants that can be solved in scCO

2 

Textile dyes classification:

 Directs  Reactive  Acids/Basics  Sulphur  Vat  Mordant  Disperse  Pigments

NOT DISSOLVED IN SC- CO 2 DISSOLVED IN SC-CO 2

COLORANT SELECTION

DISPERSE DYES 

Azoic [ N N ]

 The most important disperse dyes  Cheaper and easy manufacture  From non polar fibers 

Anthraquinone

 It’s more soluble

[1]

 More expensive

MORE SOLUBILITY

COLORANT: SELECTION

REACTIVE DISPERSE DYES

[2]

 (mono-di-)chlorotriazine  (mono-di-)-fluorotriazine  Dyeing of natural fibers  Dyeing cotton  Protein or synthetic fibers

REACTIVE GROUPS CHANGE THE COLORANT’S SOLUBILITY

 Using different co-solvents  Methanol improves the solubility R N N N Cl R N N N

COLORANT SELECTION

REACTIVE DYES  Vinylsulphone

:

Improve fixations

[3]

  Are suitable for dyeing textiles containing polyester, nylon, silk or wool.

Fixations between 70 – 90%

Solubility : [4]

-Decrease: OH, NH 2 ,COOR’ -Increase: HX NO 2 [X=F,Cl,Br,..]

PROCESS VARIABLES

Dyeing steps

 Transport of dye to the fibres:

SOLUBILITY

 Works: different cosolvents  Acetonitrile  Methanol  Water

IMPROVE THE RESULTS REACTIVE GROUPS

 Acetone  Reaction of the dye with the textile:

AFFINITY

DIFFUSSION

of dye into the fibres: D coefficient.

PARTICLE SIZE

EQUIPMENTS

Gas cylinder Carbon dioxide pump Pump head cooler Stop valves Pressure gauge Back pressure regulator Stirrer Dyeing vessel Heating jacket Cosolvent reservoir Cosolvent pump Dyeing beam

EQUIPMENTS: AINIA PILOT PLANT Planta FSC500 Planta SFF-58_60 Planta PFS20

FIBRES

PET the most studied

Changes in the structure of polymers:

 Plastics: >Tg  Size stability 

Natural fibres

[5]

 Pre-treatments: Hydrophobic and nonpolar  Polyurethane  DMDHEU  Solvents: Alcohol and water

CHALLENGES

  We only can use non polar colorants in scCO 2 : These kind of colorant haven’t affinity of natural fibres.

 There are a lot of variables in the process: Solubility can change with:  Colorants (Reactive group, Particle size…)  Pressure  Temperature  Substrates: Natural or synthetic fibers  The time of process is too long: 4h

SOLUTIONS / FUTURE PERSPECTIVES

Pre-treated fibres:

 PET: with UV, N,N-dimethylacrylamide  CO: DMDHEU, PUR, acetone… 

Changes in structure of colorants

[6]

Novel reactive disperse dyes has been synthesized. 

Control the solubility and dye process.

 Equations to predict the solubility. 

NANOPIGMENTS

ADVANTAGES OF NANOPIGMENTS

 Nanopigments are a viable and environmental friendly alternative to traditional pigments because of their easy synthesis and conventional processing.

 Increase the color gamut:  We can use a lot of conventional organic dyes.

 Increase the resistance of colors: UV, O 2 , Temperature  Improve substrate properties: stability, strength, permeability…

REFERENCES [1]

S. N. Joung et all. “Solubility of Disperse Anthraquinone and Azo Dyes in Supercritical Carbon Dioxide at 313.15 to 393.15 K and from 10 to 25 MPa” J. Chem. Eng. 43, 9-12. 1998

[2]

M.V. Fernandez et all “A significant approach to dye cotton in supercritical carbon dioxide with fluorotriazine reactive dyes” J. of Supercritical Fluids 40 477 –484. 2007

[3]

M. van der Kraan et all. “Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes” J. of Supercritical Fluids 40 470 –476. 2007

[4]

Gerardo A. Montero et all. “Supercritical Fluid Technology in Textile Processing: An Overview”

Ind. Eng. Chem. Res.

,

39,

4806-4812. 2000

[5]

P. L. Beltrame, et all.“Dyeing of Cotton in Supercritical Carbon Dioxide”.

Dyes and Pigments

, 39, 335-340. 1998

[6]

Andreas Schmidt, Elke Bach and Eckhard Schollmeyer. “Supercritical fluid dyeing of cotton modified with 2,4,6-trichloro-1,3,5 triazine”.

Color. Technol.

, 119. 2003

Acknowledgements

This work is supported by Ministry of Science and Innovation (MICINN) with the project “Aplicación de la tecnología de fluidos supercríticos en la impregnación de sustratos poliméricos” ref.: CIT 20000-2009-2.