Transcript AVL Trees

Balanced Trees
(AVL and RedBlack)
Binary Search Trees
• Optimal Behavior
▫ O(log2N) – perfectly balanced tree (e.g. complete tree with all
levels filled)
• Degenerate Behavior
▫ O(N) – tree becomes list
• How to avoid degenerate trees?
▫ Keep them perfectly balanced
 Impossible
▫ Keep them balanced within some criteria
 Maintain balance over insertions and deletions
Balanced Trees
• Balanced binary trees
▫ AVL Tree
▫ Red-Black Tree
• Balanced N-ary trees
▫ B-Trees
▫ B+-Trees
Height of BST
• A BST is not balanced
• E.g.,
5
12
23
35
65
85
AVL Trees
Discovered by two Russian mathematicians, Adelson-Velskii and
Landis, in 1962.
Mathematical Definition:
If T is a a nonempty binary search tree, then T is an AVL tree if and
only if its left and right subtrees are AVL trees and
|left height – right height| < 1.
“In English” Definition:
A binary search tree that is somewhat balanced, but not
necessarily complete or full.
AVL Trees?
45
20
10
10
70
30
60
50
7
3
15
9
13
11
30
AVL Trees
Representation:
Use the linked representation, with an addition to the
node class. The addition is a balance factor (bf), which
is defined as the following for a node x.
bf(x) = height of x’s left subtree – height of x’s right subtree
The possible balance factors are –1, 0, and 1.
AVL Trees
Insertion:
Using the standard insertion logic for a binary search
tree could cause problems with an AVL tree because
it’s possible that some of the properties could be
violated.
In other words, it’s possible that the tree could become
unbalanced.
AVL Trees
JFK
DCA
-1
Adding the node “DUS”
+1
ORD
0
results in the tree below:
JFK
GCM
+2
0
DCA
-2
GCM
DUS
0
ORD
+1
0
AVL Trees
• When an insertion is performed, the balancing
information for ALL of the nodes on the path
back to the root must be updated.
• If the AVL properties were destroyed, they can
be fixed by a simple modification to the tree,
which is known as a rotation.
AVL Trees
To fix the tree, start at the inserted node and trace its
path back to the root, stopping at the first node that
violates the AVL property (call this node A).
There are four possible violations that could occur:
1. Inserted into the left subtree of A’s left child
2. Inserted into the right subtree of A’s right child
3. Inserted into the right subtree of A’s left child
4. Inserted into the left subtree of A’s right child
AVL Trees
1. Inserted into the left subtree of A’s left child (lets call this B).
This problem is fixed by applying a single right rotation.
- Change the parent of A to point to B
- Make A’s left link equal to B’s right link
- Make B’s right link point to A
A
B
10
B
7
7
3
3
10
A
AVL Trees
2. Inserted into the right subtree of A’s right child (lets call this B).
This problem is fixed by applying a single left rotation.
- Change the parent of A to point to B
- Make A’s right link equal to B’s left link
- Make B’s left link point to A
A
45
B
B
55
A
65
45
55
65
AVL Trees
Let’s build a tree using the nodes 3, 2, 1, 4, 5, 6, 7.
3
2
1
2
1
2
3
1
3
4
AVL Trees
Let’s build a tree using the nodes 3, 2, 1, 4, 5, 6, 7.
2
2
1
1
3
4
3
4
5
5
AVL Trees
Let’s build a tree using the nodes 3, 2, 1, 4, 5, 6, 7.
2
After step 1 of a
1
4
3
4
single left rotation
2
5
6
1
3
5
6
AVL Trees
Let’s build a tree using the nodes 3, 2, 1, 4, 5, 6, 7.
4
4
After step 2 of a
2
3
5
single left rotation
2
5
1
6
1
3
6
AVL Trees
Let’s build a tree using the nodes 3, 2, 1, 4, 5, 6, 7.
4
4
After step 3 of a
2
1
5
3
2
single left rotation
6
1
5
3
6
AVL Trees
Let’s build a tree using the nodes 3, 2, 1, 4, 5, 6, 7.
4
4
2
5
2
1
3
6
6
1
7
3
5
7
AVL Trees
3. Inserted into the right subtree of A’s left child (lets call this B).
This problem is fixed by applying a left-right rotation.
- Make A’s left link equal to B’s right link (call this C)
- Make B’s right link equal to C’s left link
- Make C’s left link equal to B
- Change the parent of A to point to C
- Make A’s left link equal to C’s right link
- Make C’s right link point to A
A
B
15
A
7
C
C
12
B
12
7
15
C
B
12
7
15
A
AVL Trees
4. Inserted into the left subtree of A’s right child (lets call this B).
This problem is fixed by applying a right-left rotation.
- Make A’s right link equal to B’s left link (call this C)
- Make B’s left link equal to C’s right link
- Make C’s right link equal to B
- Change the parent of A to point to C
- Make A’s right link equal to C’s left link
- Make C’s left link point to A
A
15
B
C
21
A
32
15
C
C
21
B
A
32
15
21
32
B
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
4
2
1
Right-left rotation
6
3
5
1
7
17
16
2
6
3
5
17
7
16
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
4
2
1
Right-left rotation
6
3
5
17
7
2
1
16
6
3
5
7
16
17
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
4
2
1
Right-left rotation
6
3
5
7
2
1
6
3
5
16
16
17
7
17
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
4
2
1
Right-left rotation
6
3
5
1
16
17
7
2
6
3
5
16
7
17
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
4
2
2
Right-left rotation
6
1
1
3
5
6
3
5
7
16
16
7
17
15
15
17
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
4
2
1
6
3
5
2
Right-left rotation
7
1
16
15
7
3
6
5
17
16
15
17
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
4
7
single left rotation
2
7
4
1
3
6
5
16
15
13
16
2
17
1
6
3
5
15
13
17
AVL Trees
Let’s build onto the previous example by adding the nodes:
17, 16, 15, 13, 14.
7
Left - right rotation
4
16
2
6
7
15
17
4
1
3
5
16
13
2
6
14
17
14
1
3
5
13
15
Red-Black Trees
• Similar idea to AVL Trees
• Similar worse case time complexity
• Keep tree somewhat balanced
▫ not as rigidly balanced as AVL
▫ A Red-Black tree with n nodes has height at most 2log(n+1),
i.e., most of the common operations are performed in O(log
n).
▫ Longest path is no more than twice as long as the shortest
branch
Red-Black Trees
• A red-black tree is an extended binary tree (every node has
two children or is a leaf) which satisfies the following
properties:
▫ The root is black (if non-empty)
 Root property
▫ If a node is red, it’s parent must be black
 Red property
▫ Every path from the root to a leaf/single-child node contains the
same number of black nodes. This number is called the blackheight of the tree.
 Path property
Red-Black?
Red-Black?
yes
no
yes
Red-Black?
Red-Black?
no
Properties Revisited
▫ The root is black (if non-empty)
 Root property
▫ If a node is red, it’s parent must be black
 Red property
▫ Every path from the root to a leaf/single-child node contains the
same number of black nodes. This number is called the blackheight of the tree.
 Path property
Adding null leaf nodes
• Every node has 2 children
▫ Don’t include null nodes in the black-height of the tree
Properties Revisited
• Objective:
▫ Restore red property violation while preserving other
properties (i.e. path property).
▫ Techniques: re-color and/or rotate.
Property Restoration
• Invariant:
▫ There is exactly one red node x in the tree whose parent may be
red.
 When a new node is added, it is always added as a red node
• Strategy:
▫ Fix the violation of red property at x.
▫ This may violate the condition at some ancestor.
▫ Continue fixing the property at the ancestor (ancestor becomes x)
Property Restoration
• Terminology:
▫ x is the current node in violation of the red property
 It is red, and its parent is also red
▫ parent(x) is its parent
▫ parent(parent(x) ) is its grandparent (i.e. grandparent(x))
▫ The other sibling of parent(x) is its uncle (i.e. uncle(x))
Property Restoration
There are several cases:
•
Case 1:
▫
X is the root

Case 2:
▫
Parent(x) is black

Case 3:
▫
Parent(x) and Uncle(x) are both red

Case 4:
▫
Parent(x) is red, but Uncle(x) is black


Multiple parts of this case…
Property Restoration
Case 1:
X is the root
x
Change its color to black.
x
Property Restoration
Case 2:
Parent(x) is black
p
p
x
Don’t do anything
x
Property Restoration
Case 3:
Parent(x) and Uncle(x) are both red
g
p
x
g
u
p
u
x
Change the color of the parent and its uncle to black.
Change the color of the grandparent node to red, and repeat
with x = grandparent(x)
Property Restoration
Case 4:
Parent(x) is red, but Uncle(x) is black
There are 4 different cases, much like the 4 different AVL cases
g
p
x
g
u
p
g
u
x
left-left
left-right
u
g
p
u
p
x
right-left
x
right-right
Property Restoration
Case 4 cont:
left-left and right-right are symmetric
left-right and right-left are symmetric
g
p
x
g
u
p
g
u
x
left-left
left-right
u
g
p
u
p
x
right-left
x
right-right
Property Restoration
Case 4 left-left:
First rotate the parent RIGHT
Then recolor by switching colors of P and G
Case 4 right-right is symmetric – simply rotate LEFT instead
g
p
u
p
x
1
3
2
4
p
x
5
1
g
2
x
3
u
4
1
5
g
2
3
u
4
5
Property Restoration
Case 4 left-right:
First rotate x LEFT (shown below)
then rotate the parent RIGHT and recolor by switching colors of P
and G
Case 4 right-left is symmetric – simply rotate RIGHT then LEFT
g
g
u
p
1
x
4
x
5
p
1
u
3
2
4
5
Property Restoration
Case 4 left-right:
First rotate x LEFT (shown previously)
then rotate the parent RIGHT and recolor by switching colors of X
and G (just like left-left case but where p and x switch rolls)
Case 4 right-left is symmetric – simply rotate RIGHT then LEFT
g
x
u
x
p
1
3
2
4
x
p
5
1
g
2
p
3
u
4
1
5
g
2
3
u
4
5
Insertion Complexity
• Observations:
▫ Every one of the three cases take constant time.
▫ Case 3 brings x two steps closer to the root and only re-colors
nodes without any rotations.
▫ For the multiple cases in 4, one or two rotations plus a re-coloring are
required and we are done.
• Lemma:
▫ An insertion into a red-black tree with n nodes takes O(log2 n) time
and performs at most two rotations.
Insertion Example
• Snap-shots taken from:
 http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html
 Note their rules are numbered differently than our
▫ Insert 50, 30, 70 (recall new nodes always insert as red):
 Rule 1 for 50, Rule 2 for 30 and 70
▫ Null nodes (all black are not shown)
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65
▫ Red property violation  re-color (Case 3: Parent & Uncle are red)
 Re-color parent and uncle black while re-coloring grandparent red
Insertion Example
▫ Continue with grandparent as X
▫
Root must be black! (Rule 1)
 color it black
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80
▫ No violations (rule 2)
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75
▫ Case 3: Uncle & parent are both red
 re-color them black and the grandparent red
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75
▫ Continue on recursively with grandparent being x
▫ Case 2: no violations
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67
▫ Case 4: Parent & uncle: diff. color: right-left
▫ Balance: first rotation 67 right, then left
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67
▫ Flip colors of G (65) and X (67)
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67, 55
▫ Case 3: parent & uncle same color  re-color them and grandparent
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67, 55
▫ Recursively continue with 67 being the new x
▫ Case 4: 70 and 30 are diff colors: right-left
 First rotate 67 right
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67, 55
▫ Then rotate 67 left
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67, 55
▫ Then flip colors of 67 and 50
Insertion Example
• Consider the following actions;
▫ Insert 50, 30, 70, 65, 80, 75, 68, 67, 55
Done!
Benefits/Usage of Red-Black Trees
• Properties
▫ O(log2N) and Θ(log2N) for search, insert, remove operations
• Usage
▫ Underlying implementation structure for hash maps, hash
sets, multimaps, multisets in Standard Template Library
▫ New scheduler for Linux
Comparison of Red-Black and AVL
• Both are Binary Search Trees
• Both have the same worst case big-O time complexity for:
▫ Search
▫ Insert
▫ Delete
• AVL trees are more rigidly balanced
▫ AVL trees are slightly faster for lookup
▫ AVL trees are more costly for insert and delete
• Most people are using Red-Black trees in their
implementations