Reversible Data Hiding in Encrypted Image

Download Report

Transcript Reversible Data Hiding in Encrypted Image

A Novel Data Embedding Scheme
Using Optimal Pixel Pair Substitution
Source: IEEE transactions on information forensics and security,
vol. 7, no. 1, February 2012
Authors: Wien Hong and Tung-Shou Chen
Reporter: Tung-Shou Chen
Date: 2012/06/08
Outline
1.
2.
Introduction
Related work
1.
2.
3.
4.
5.
2
Optimal pixel adjustment process (OPAP)
Diamond encoding (DE)
Proposed method
Experimental results
Conclusion
Introduction
10100….1
10100….1
key
Transmission
Cover image
Image database
3
Stego image
Stego image
Related work - Optimal pixel adjustment process
(OPAP)
 H   2r , H  r   s  2r 1 and H   2r  255,


r
H    H   2r , H    s  2r 1 and H   2r  0,
 H ,
otherwise.


H  16010  101000002
r
H    0002  010
H   101001012  16510
4
s  510  1012
r 3
r
H    s  0  5  231 ,
 H   H   23  165  8  157
Related work - Diamond encoding (DE)
5
Related work - Diamond encoding (DE)
6
Related work - Diamond encoding (DE)
Extract data
7
Proposed method (1/3)
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16
c17
c18
1
1
2
2
2
2
3
3
3
3
4
5
4
4
4
4
4
c19
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31
c32
c33
c34
c35
4
8
4
5
5
5
5
10
5
5
5
12
12
7
6
6
10
c36
c37
c38
c39
c40
c41
c42
c43
c44
c45
c46
c47
c48
c49
c50
c51
c52
15
6
16
7
7
6
12
12
8
7
7
7
7
14
14
9
22
c53
c54
c55
c56
c57
c58
c59
c60
c61
c62
c63
c64
8
12
21
16
24
22
9
8
8
8
14
14
8
Proposed method (2/3)
 4 , c4  2
5
5
5
5
 5 , c5  2
 6 , c6  2
 7 , c7  2
 9 , c9  3
 for DE, k  4
 for DE, k  3
13 , c13  5
5
5
5
16 , c16  6
25 , c25  5
41 , c41  6
Neighborhood set (Shaded region) for APPM.
9
Proposed method (3/3)
Extract data
10
Experimental results (1/4)
bpp
1
2
3
4
LSB OPAP
0.500 0.500
2.500 1.500
10.500 5.500
42.500 21.500
APPM
0.375
1.344
5.203
20.518
MSE
improvement
over OPAP
0.125
0.156
0.297
0.982
MSE Comparison of the proposed method with LSB and OPAP
11
Experimental results (2/4)
Base
12
bpp
DE
APPM
k
MSE
MSE
MSE
Improvement
5
1.161
1
0.4
2
0.4
0
13
1.850
2
1.077
5
1.077
0
25
2.322
3
2.080
5
2.000
0.080
41
2.679
4
3.415
6
3.341
0.074
61
2.965
5
5.082
8
4.902
0.180
85
3.205
6
7.082
10
6.847
0.235
113
3.410
7
9.416
31
9.071
0.345
145
3.590
8
12.083
22
11.890
0.193
181
3.750
9
15.083
39
14.519
0.564
221
3.894
10
18.416
26
17.787
0.629
Experimental results (3/4)
(a) Cover image.
(b) Stego image, 2 bpp at
46.86 dB.
(c) Stego image, 3 bpp at
40.97 dB.
(d) Stego
image, 4 bpp at 34.90 dB.
13
Experimental results (4/4)
MSE comparison of various PPM-based methods. The payload-MSE relationship of APPM is
denoted by circles. The -ary digits used for a given payload are marked beside the circle.
14
Conclusion

This paper proposed a simple and efficient data
embedding method based on PPM.

APPM allows users to select digits in any notational
system for data embedding, and thus achieves a better
image quality.

APPM not only resolves the low-payload problem in
EMD, but also offers smaller MSE compared with
OPAP and DE.
15
Thank you.
16