Transcript Apx E
Appendix E: Sigma Notation
1
Definition: Sequence
•
•
•
•
A sequence is a function a(n) (written an) who’s domain is
the set of natural numbers {1, 2, 3, 4, 5, ….}. an is called
the general term of the sequence.
The output of a sequence can be written as {a1, a2, a3, …,
an-1, an, an+1, …}, where an is a term in a sequence, an-1 is
the term before it, and an+1 is the term after it.
Sequences can be either finite (their domains are {1, 2, 3,
…, n}) or infinite (their domains are {1, 2, 3, ….}).
A sequence who’s input for the next term in the sequence
is the value of the previous term is called a recursive
sequence.
2
Definition: Arithmetic Sequence
An arithmetic sequence is a sequence generated
by adding a real number (called the common
difference, d) to the previous term to get the next
term. The general term of an arithmetic is given
by an = a1 + d(n – 1) where a1 and d are any real
numbers.
Example Find the general term of the 7/3, 8/3, 3,
10/3, ….
3
Definition: Geometric Sequence
A geometric sequence is a sequence generated by
multiplying the previous term by a real number (called
the common ratio r). The general term of a geometric
sequence is given by an = a1 r(n – 1) where a1 and r are
any real numbers, is called an geometric sequence.
Example Find the general term sequence 2, 2/5, 2/25,
2/125, …
TI: seq(ax , x, i start, i stop)
4
Definition: Series
•
•
•
A finite series is the sum of a finite number of
terms of a sequence.
An infinite series is the sum of an infinite
number of terms of a sequence.
We use sigma notation to denote a series. The
series does not have to start at i = 1, but i must
be in the domain of ai.
n
a
i 1
i
a1 a2 ... an
5
Definition: Geometric Sequence
The nth partial sum is the sum of the first n terms
of a sequence. It MUST start at i = 1 with partial
sum notation. n
S n ai a1 a2 ... an
i 1
An infinite sum is the sum of all the terms of an
infinite sequence.
S ai a1 a2 ...
i 1
6
Definition: Example
7
2
1. Evaluate
.
i 2 i 1
4
2. Evaluate
3 k
2
.
k 2
5
3. Evaluate x k .
k 0
TI: sum(seq(ax , x, i start, i stop))
7
Definition: Example
4. Write the sum in sigma notation.
3 4 5 6 7
5 7 9 11 13
5. Write the sum in sigma notation.
1+3+5+7+...+(2n-1)
6. Write the sum in sigma notation.
1 x x 2 x3 ... (1)n x n
8
Definition: Series
Sn
n
a1 an
2
For a finite arithmetic series,
For an infinite arithmetic series, S DNE
For a finite geometric series, Sn
For an infinite geometric series,
if | r | < 1. It DNE otherwise.
a1 1 r n
1 r
a1
S
1 r
9
Definition: Example
7. Find the 97th partial sum of an 2n 3.
i
1
8. Evaluate 2 .
i 1 3
10
Definition: Series Formulas
Let c be a constant and n a positive integer.
n
a.
ca
i
i 1
n
c ai
i 1
n
b.
n
i
i
n
1 n
i 1
n
d.
n
a b a b
i 1
c.
n2 n
e. i
2 2
i 1
n
c cn
i 1
i 1
i
i 1
i
3
2
n
n
n
2
f . i
3 2 6
i 1
n
n n 1
g. i
2
i 1
n
2
3
11
Definition: Series Formulas
n
9. Write a formula for the series in terms of n:
i 3
2
i 1
10. If the interval [a, b] is split into n equal subintervals,
write a sequence xi that represents the x coordinate of the
left side, midpoint, and right side of each subinterval.
1 i
3
11. Show that lim 1
n
2
i 1 n n
n
12