Transcript ch07
Figure 7.1 The current mirror. © 2000 Prentice Hall Inc. Figure 7.2 Emitter follower with bias current source. © 2000 Prentice Hall Inc. Figure 7.3 The offset voltage can be reduced by cascading a complementary (pnp) emitter follower. © 2000 Prentice Hall Inc. Figure 7.4 Doubling the junction area of a BJT is equivalent to connecting two of the original BJTs in parallel. © 2000 Prentice Hall Inc. Figure 7.5 Current mirror for Examples~7.1 and 7.2. © 2000 Prentice Hall Inc. Figure 7.7 Output characteristic for the current mirror of Figure 7.5. © 2000 Prentice Hall Inc. Figure 7.8 Dynamic output resistance of the current mirror of Figure 7.5. © 2000 Prentice Hall Inc. Figure 7.9 Collector characteristic of Q2, illustrating the Early voltage. © 2000 Prentice Hall Inc. Figure 7.10 The Wilson current source, which has a high output resistance. © 2000 Prentice Hall Inc. Figure 7.11 The Widlar current source, which is useful for small currents. © 2000 Prentice Hall Inc. Figure 7.12 Typical biasing circuit for a bipolar IC. © 2000 Prentice Hall Inc. Figure 7.13 Answer for Exercise 7.2. © 2000 Prentice Hall Inc. Figure 7.14 JFET as a current source. © 2000 Prentice Hall Inc. Figure 7.15 NMOS current mirror. © 2000 Prentice Hall Inc. Figure 7.16 NMOS Wilson current source. © 2000 Prentice Hall Inc. Figure 7.17 Circuits for Exercise 7.4. © 2000 Prentice Hall Inc. Figure 7.18 Current versus voltage for the circuits of Figure 7.17. © 2000 Prentice Hall Inc. Figure 7.19 Dynamic resistance versus voltage for the circuits of Figure 7.17. © 2000 Prentice Hall Inc. Figure 7.20 One solution for Exercise 7.7. © 2000 Prentice Hall Inc. Figure 7.21 One solution for Exercise 7.8. © 2000 Prentice Hall Inc. Figure 7.22 Basic BJT differentiial amplifier. © 2000 Prentice Hall Inc. Figure 7.23a Basic BJT differential amplifier with waveforms. © 2000 Prentice Hall Inc. Figure 7.23b Basic BJT differential amplifier with waveforms. © 2000 Prentice Hall Inc. Figure 7.24 pnp emitter-coupled pair. © 2000 Prentice Hall Inc. Figure 7.25 Collector currents versus differential input voltage. © 2000 Prentice Hall Inc. Figure 7.26 Voltage transfer characteristic of the BJT differential amplifier. © 2000 Prentice Hall Inc. Figure 7.27 Differential amplifier with emitter degeneration resistors. © 2000 Prentice Hall Inc. Figure 7.28 Voltage transfer characteristic with emitter degeneration resistors. R EF = 40(VT/IEE). © 2000 Prentice Hall Inc. Figure 7.29 Either a balanced or single-ended output is available\break from the differential amplifier. © 2000 Prentice Hall Inc. Figure 7.30 Emitter-coupled pair with current-mirror load. © 2000 Prentice Hall Inc. Figure 7.31 Answers for Exercise 7.10. © 2000 Prentice Hall Inc. Figure 7.32 Answers for Exercise 7.11. © 2000 Prentice Hall Inc. Figure 7.33 Small-signal equivalent circuit for the differential amplifier of Figure 7.27. (REB is the output impedance of the current source IEE.) © 2000 Prentice Hall Inc. Figure 7.34 Half-circuit for a differential input signal. © 2000 Prentice Hall Inc. Figure 7.35 Small-signal equivalent circuit with a pure common-mode input signal. © 2000 Prentice Hall Inc. Figure 7.36 Half-circuit for a pure common-mode input signal. © 2000 Prentice Hall Inc. Figure 7.37 Emitter-coupled pair of Exercise 7.13. © 2000 Prentice Hall Inc. Figure 7.38 Addition of emitter followers to increase input impedance. © 2000 Prentice Hall Inc. Figure 7.39 First attempt in Example 7.4. © 2000 Prentice Hall Inc. Figure 7.40 Differential amplifier of Example7.4 using the Wilson current source. © 2000 Prentice Hall Inc. Figure 7.41 Differential amplifier of Example 7.4. © 2000 Prentice Hall Inc. Figure 7.42a Waveforms for the differential amplifier of Example 7.4. © 2000 Prentice Hall Inc. Figure 7.42b Waveforms for the differential amplifier of Example 7.4. © 2000 Prentice Hall Inc. Figure 7.42c Waveforms for the differential amplifier of Example 7.4. © 2000 Prentice Hall Inc. Figure 7.43 Source-coupled differential amplifier. © 2000 Prentice Hall Inc. Figure 7.44 Drain currents versus normalized input voltage. © 2000 Prentice Hall Inc. Figure 7.45 Differential output voltage versus normalized input voltage. © 2000 Prentice Hall Inc. Figure 7.46 Small-signal equivalent circuit for the source-coupled amplifier of Figure 7.43. (Note: RSB is the output resistance of the bias current source I.) © 2000 Prentice Hall Inc. Figure 7.47 Source-coupled differential pair of Example 7.5. © 2000 Prentice Hall Inc. Figure 7.48 Differential and common-mode voltage gains versus frequency for the circuit of Example 7.5. © 2000 Prentice Hall Inc. Figure 7.49 CMOS op amp. © 2000 Prentice Hall Inc. Figure 7.50 Small-signal equivalent circuit for the output stage consisting of M7 and M2. © 2000 Prentice Hall Inc. Figure 7.51 Small-signal equivalent circuit for the source-coupled input stage. © 2000 Prentice Hall Inc. Figure 7.52 Test circuit for open-loop gain. The internal circuit for the op amp is shown in Figure 7.49. © 2000 Prentice Hall Inc. Figure 7.53 Open-loop gain versus frequency for the CMOS op amp. © 2000 Prentice Hall Inc. Figure 7.54 Unity-gain buffer amplifier of Exercise 7.16. © 2000 Prentice Hall Inc. Figure 7.55 A BJT op amp. © 2000 Prentice Hall Inc. Figure 7.56 Equivalent circuit for the first stage of Figure 7.52. REB represents the output impedance of current sink Q8. Ri = rp3 + r p4 is the differential input impedance of the second stage. © 2000 Prentice Hall Inc.