seminar_examination.p - University of Guelph

Download Report

Transcript seminar_examination.p - University of Guelph

Protein-Protein Interactions and Inhibition of the ADP-Ribosyl Transferase Reaction of Pseudomonas aeruginosa Exotoxin A Susan P. Yates

Ph.D. Thesis Defence Supervisor: Dr. A. Rod Merrill

Outline

Background

Research Objectives

 Inhibition of the catalytic domain of exotoxin A  Interactions between the toxin and its protein substrate 

Final Thoughts

Pseudomonas aeruginosa

Gram-negative rod-shaped bacterium

Opportunistic pathogen

 Exploits some break in the host defenses to initiate an infection  Cystic fibrosis, severe burns, AIDS, cancer, etc.

Highly adaptable to new environments

Resistant to many antibiotics

 Possesses a vast array of virulence factors  Very complex pathogenesis

Virulence Factors

Flagellum

Pseudomonas aeruginosa

Alginate/Biofilm Extracellular products  Rhamnolipid     Phospholipase C Proteases .

Siderophores Exotoxin A Pilus LPS

Exotoxin A – The Virulence Factor

 Exotoxin A (ETA) is the most potent virulence factor of

Pseudomonas aeruginosa

 LD 50 of 0.2 mouse m g when injected intraperitoneally into a 18-gram  Biological effects  Extensive tissue damage  Promotes bacteria invasion  Interferes with function of the cellular immune system  May lead to systemic disease

Exotoxin A – The Enzyme

 Member of mono-ADP ribosyl transferase family  Other members include:  Diphtheria toxin, pertussis toxin, cholera toxin, C3 exoenzyme, iota toxin  66 kDa single polypeptide  Three functional domains  Secreted as a proenzyme  Activated within the eukaryotic cell through a proteolytic event

Ib III Catalytic II Translocation Ia Receptor binding

(Wedekind et al., (2001) J. Mol. Biol. 314, 823)

Eukaryotic Elongation Factor 2 (eEF2)

 Protein substrate for ETA  90 –110 kDa protein  GTPase superfamily  Important factor in the elongation step of protein synthesis  Covalent modification by ETA produces ADP-ribosyl eEF2 (ADPR-eEF2)  Prevents its participation in protein translation  Cell death

II Diphthamide G′ III IV G V

(J ørgensen et al., (2003) Nat. Struc. Biol. 10, 379)

Function of eEF2

ADP-Ribosyl Transferase (ADPRT) Reaction

H 2 N

NAD +

N N N N O H 2 C

A-phosphate

O P O O O P O O O -

N-phosphate

CH 2 O + N O NH 2

A-ribose

HO OH O HO H OH

N-ribose

N H 2 N N

A-ribose

HO N

STEP 1

NH 2 N

nicotinamide A-phosphate

N O H 2 C O O P O O O O P O

N-phosphate

CH 2 O + H H 2 N OH N HO OH

oxacarbenium ion STEP 2 -H +

H O N

N-3

N H C CH 2 H 2 C

diphthamide residue of eEF2

NH CH 2 + N(CH 3 ) 3 CH O H 2 N N N

A-ribose

HO N O H 2 C O P O O O P O O O CH 2 O H H NH C CH 2 O OH HO

N-ribose ADP-ribosyl - eEF2

N OH H 2 C CH 2 N + N(CH 3 ) 3 CH O H 2 N

Catalytic Domain of ETA (PE24H)

-TAD Tyr-470 Tyr-481 His-440 Glu-553

(Li et al., (1996) PNAS

93,

6902)

Research Objectives – The Big Picture

 General statement  Improve the understanding of the interactions between the catalytic domain of ETA and both its substrates, eEF2 and NAD +  Long term research goals  Understand the detailed reaction mechanism for ETA  Knowledge-based approach to preventing the action of this toxin  Develop new strategies that target ETA to fight

Pseudomonas aeruginosa

infections

Research Objectives – My Specific Projects

Part A : Interactions of the toxin with NAD + 1.

2.

Study of water-soluble inhibitors Development of a NAD + -glycohydrolase assay Part B : Toxin-eEF2 interactions 3.

4.

5.

Physiological requirements for binding Fluorescence-based approach to elucidate sites of contact Fluorescence resonance energy transfer (FRET) distance study

PART A: Interactions of the Toxin with NAD

+ Project #1 STUDY OF WATER-SOLUBLE INHIBITORS

Yates, S.P., Taylor, P.L., J ørgensen, R., Ferraris, D., Zhang, J., Andersen, G.R., and Merrill, A.R. Biochem. J. (2005) 385:667-675.

Inhibition of PE24H

 Previous work from our research group  Characterization of a series of small, non-polar competitive inhibitors  Most potent inhibitor was NAP (1,8-napthalamide)  Model of NAP bound to catalytic domain of ETA  Lack of water-solubility limited the usefulness as potential therapeutic drugs Armstrong et al., (2002) J. Enzyme Inhib. Med. Chem.

17

, 235

Aims of Study

 Characterize a series of water-soluble compounds for their inhibition against PE24H  Co-crystal structure of the inhibitor PJ34 with PE24H

The Inhibitors

 Mimic nicotinamide  IC 50 values ranged from 170 nM to 82.4 m M  GP-D, PJ34, GP-M most potent  Hallmark of a good inhibitor was a planar hetero-ring O NH NH H 3 C O N CH 3

PJ34

NH O NH N F N

Tricyclic Lactams – [6,6,6]-Ring System

O O O NH NH NH O N N N N N O N

GP-L

N CH 3

GP-G

H 3 C N

GP-N Tricyclic Lactams – [5,6,7]-Ring System

O O NH NH CH 3 N N N N N CH 3 CH 3 O

GP-D Bicyclic Lactam

O NH + NH 3 Cl -

5-AIQ

H 3 C N CH 3

GP-F Tetracyclic Lactam

O NH O

GP-P

SO 3 H O NH N H N O N

GP-M

O NH N N N

GP-H GP-I NAD + Analogue

O NH 2 N + O NH 2 F N N O O P O OH O O P O O O N N OH OH

2’-F-ribo-NAD + (F-NAD + )

N

PJ34 – Further Characterized

 Water-soluble phenanthridinone derivative  IC 50 = 280 nM  Commercially available  Well-characterized compound  Studied in extensively in several PARP related systems O NH NH H 3 C N CH 3 O

Biochemical Characterization of PJ34

 Binding affinity  K D is 820  54 nM  70x tighter binding to PE24H compared to NAD +  Competitive inhibitor  As [PJ34] increases, the K M increases but the V max remains unchanged  K i = 140 nM determined using both Dixon and Lineweaver-Burk methods 1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000

[PJ34], nM

4000 5000 0.4

0.3

0.2

0.1

0.0

-0.1

1.0

0.9

0.8

0.7

0.6

0.5

-200 50 m M  -NAD + 100 m M  -NAD + 200 m M  -NAD + 300 m M  -NAD + 500 m M  -NAD + 0 200 400 600

[PJ34], nM

800 1000 1200

Crystallization of PE24H-PJ34

Data

 2.1 Å resolution 

Refinement

 R-factor = 21.3 %  R free -factor = 23.5 %

Hydrophobic Pocket and Active Site

Yates et al., (2005) Biochem. J. 385 , 667

Interactions in the Active Site

3.1 Å 2.7 Å 2.5 Å 2.5 Å

Yates et al., (2005) Biochem. J. 385 , 667

Similar Enzymes

 Catalytic domain of ETA is functionally and structurally similar to both mono-ADPRTs and PARPs  Diphtheria toxin (DT)  Mono-ADPRT and also catalyzes the ADP-ribosylation of eEF2  PARPs (Poly-(ADP-ribosyl) polymerases)  Catalyzes the covalent attachment of ADP-ribose units to nuclear DNA-binding proteins Taken from: Putt & Hergenrother (2004)

Anal. Biochem

.

326

, 78

Comparison to Other Active Sites

DT

DT structure: Bell & Eisenberg, (1996) Biochemistry 35 , 1137

PARP

PARP structure: Ruf et al., (1998) Biochemistry 37 , 3893

Findings for Project #1

 Hetero-ring planarity important for inhibition  PJ34 is a competitive inhibitor  First report of a structure of a mono-ADPRT-inhibitor complex  Confirmed the hydrogen bonding of the lactam moiety to Gly-441  Planar compounds sandwich better into the nicotinamide-binding pocket than more flexible compounds  Similarities and differences between bacterial toxins and PARP  Exploit the differences to target one enzyme over the other

PART A: Interactions of the Toxin with NAD

+ Project #2 DEVELOPMENT OF A NAD + -GLYCOHYDROLASE ASSAY

Yates, S.P., and Merrill, A.R. Anal. Biochem. (2005) in press.

NAD

+

-Glycohydrolase Activity

H 2 N N N H 2 N N N HO N N O H 2 C O P O O O P O O O CH 2 O + N OH

STEP 1

HO

NAD +

O NH 2 N

nicotinamide

H OH N N O H 2 C O O P O O P O O O CH 2 O + H O NH 2 O H + H + HO OH HO OH

oxacarbenium ion

H 2 N

STEP 2 - H +

N N N HO N O H 2 C O O P O O P O O O CH 2 O OH HO H OH OH

ADP-ribose

F-NAD

+  Initial inhibitor study showed that IC 50 value is 82.4  7.4 m M  Binding affinity to toxin similar to NAD +   NAD + F-NAD +   K D K D = 53  = 33  2 m M 1 m M O N + O O O P O OH O O P O O F O NH 2 N N OH NH N OH 2 N 1.0

0.8

0.6

0.4

0.2

0.0

0 F-NAD + NAD + 200 400 600 [NAD + or F-NAD + ], m M 800 1000

A.

NAD +

H 2 N N N N N O H 2 C 

-phosphate

O P O O O O P O O 

-phosphate

CH 2 O + N

A-ribose

HO OH HO H OH

N-ribose

O H 2 N N

STEP 1

NH 2 N

nicotinamide

N 

-phosphate

O O N A.

H 2 N N O H 2 C P O O O P O O 

-phosphate

CH 2 O + H N O OH + H +

NAD +

N N N O H 2 C 

-phosphate

O P O O O O P O O 

-phosphate

CH 2 O + N NH 2 HO

A-ribose

OH H 2 N HO OH

oxacarbenium ion STEP 2 - H +

H 2 O

A-ribose

HO OH O HO H OH

N-ribose

N 

-phosphate

OH + H + N NH 2 H 2 N

STEP 1

N N

nicotinamide

-phosphate

N O O N N H 2 C O P O O P O O 

-phosphate

CH 2 O + O

Aims of Study

HO OH HO OH H N

A-ribose

HO N O H 2 C OH O P O O O O P O O CH 2 

-phosphate

O H HO

N-ribose

OH OH

ADP-ribose

 

A-ribose

Is F-NAD +

oxacarbenium ion

a competing substrate or a competitive inhibitor?

N H 2 N  Is the C-N bond broken?

 N

A-ribose

Why?

HO   N N H 2 C 

-phosphate

OH 

STEP 2

O O O P 

-phosphate

F-NAD + O O P O -

- H +

O CH 2 HO O H OH OH  B.

Develop an HPLC-based NAD + -NAD + H 2 N N lacks this structural feature N

A-ribose

HO N N O H 2 C OH 

-phosphate

-glycohydrolase assay O P O O O P O O 

-phosphate

CH 2 HO O F + N H

N-ribose F-NAD + 2'-F-N-ribose

Contains a etheno bridge which gives rise to its fluorescence

ADP-ribose

O NH 2 O NH 2 B.

H 2 N N N

A-ribose

HO N N O H 2 C 

-phosphate

O P O O O O P O O 

-phosphate

CH 2 O OH + N H HO F

2'-F-N-ribose F-NAD +

O C.

NH 2 NH N N 

-A-ribose

HO + N N O H 2 C 

-phosphate

O O O P O O P O O 

-phosphate

CH 2 O OH + N HO

N-ribose

H OH 

-NAD +

O NH 2 C.

NH N N 

-A-ribose

HO + N N O H 2 C 

-phosphate

O O O P O O P O O 

-phosphate

CH 2 O OH + N HO

N-ribose

H OH 

-NAD +

O NH 2

Reaction and Sample Preparation

Samples (25

m

L) taken at t = 0 to 4 hrs Sampling Reaction Setup Toxin + NAD + (250

m

L) Load to Spin Column Add 75

m

L Mobile Phase (with internal standard) Toxin Removed Chelating Sepharose Spin Column PE24H bound to resin Flow-Through ready for HPLC – contains no protein

HPLC Instrumentation Setup

Inject sample via sample loop Precolumn 150 mm C18 column – reverse phase 4.6 mm Detector at 259 nm

Mobile phase: 20 mM NaHPO 4 , pH 5.5: acetonitrile (100:5 v/v %)

HPLC and Analysis – Rate Determination

0.10

0.8

NAD +

0.08

0.6

0.06

0.04

0.02

0.00

ADPR + PABA nicotinamide

0.4

0.2

0.0

0 100 200 300 pmoles of nicotinamide 400 500 0 2 4 6 Retention Time (minutes) 8

Nicotinamide Standard Curve Chromatogram

300 250 200 150 100 50 0 0 1 2 Time (hours) 3 4

Time Course Plot Rate = 55

3

m

M nicotinamide produced per hour

Rate of Hydrolysis of F-NAD

+  Visual inspection of chromatograms shows the peak area for ADPR increasing  Mathematically deconvoluted ADPR peak from NAD + or F NAD + peak  Hydrolysis of F-NAD + 0.2% rate of NAD + is 0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.06

0.05

0 0.04

ADPR F-NAD + PABA

2 4 6 Retention Time (minutes)

F-NAD + nicotinamide

0 hours 8 48 hours 0.03

0.02

0.01

0.00

ADPR PABA nicotinamide

0 2 4 6 Retention Time (minutes) 8

Findings for Project #2

 HPLC-based NAD + -glycohydrolase assay developed  Addition of spin column step allows quick removal of protein  F-NAD + binds to the enzyme but not readily hydrolyzed  What does fluorine substitution at 2'-OH position do?

 Disrupts hydrogen bond between Glu-553 and 2'-OH position  This hydrogen bond important for bond breakage  Cause nicotinamide leaving group to depart slower  Fluorine substituent may destabilize cationic intermediate

PART B: Toxin-eEF2 Interactions

Project #3 PHYSIOLOGICAL REQUIREMENTS FOR BINDING

Loop Yates, S.P., and Merrill, A.R. J. Biol. Chem. (2001) 276:35029-35036.

pH and Guanyl nucleotide Armstrong, S., Yates, S.P., and Merrill, A.R. J. Biol. Chem. (2002) 277:46669-46675.

ADPR-eEF2 J ørgensen, R., Yates, S.P., Teal, D.J., Nilsson, J., Prentice, G.A., Merrill, A.R., and Andersen, G.R. J. Biol. Chem. (2004) 279:45919-45925.

Aims of Study

 Investigate the conditions required for toxin-eEF2 interaction  Effect of pH  Effect of bound guanyl nucleotides on eEF2  Effect of ADP-ribosylation of eEF2  Functional role of a surface-exposed loop near the active site

FRET-based eEF2 Binding Assay

 Fluorescence Resonance Energy Transfer (FRET)  Transfer of excitation energy from a donor fluorophore to a an acceptor fluorophore through non-radiative dipole dipole interactions  Criteria  Donor and acceptor in close proximity  Acceptor absorption overlaps with fluorescence emission of donor  Dipole-dipole interactions are parallel Donor Fluorescence Acceptor Absorption

Wavelength (

)

 Donor fluorophore  PE24H labelled with IAEDANS ( PE24H-AEDANS )  Acceptor fluorophore  eEF2 labelled with fluorescein ( eEF2-AF )

Effect of pH on eEF2 Binding to Toxin

 Optimum eEF2 binding at pH 7.8

 Two distinct pK

a

values  Acidic pK

a

= 6.3

 His residue  Alkaline pK

a

= 9.3

 Tyr residue  pH profiles for eEF2 binding and catalysis very similar  eEF2 binding may be responsible for pH dependence observed in catalysis

5.0

4.0

3.0

2.0

1.0

0.0

9.0

8.0

7.0

6.0

4 6 8 pH 10 12

Effect of Guanyl Nucleotides

 eEF2 is a member of the GTPase superfamily  Does the toxin require a specific eEF2 conformation for binding?

 eEF2 with non-hydrolyzable GTP/GDP analogues bound

1.0

0.8

0.6

0.4

eEF2 substrate Native-absence of bound nucletides GDP  -S bound GTP  -S bound Relative ADPRT 100  9 a 102  4 92  10

0.2

0.0

0

eEF2-AF GTP  -S-eEF2-AF GDP  -S-eEF2-AF

1000 2000 3000 4000 [eEF2-AF], nM 5000 6000

 Toxin does not prefer a specific state of eEF2 for either binding or catalytic function

Interaction of ADPR-eEF2 with Toxin

 ADPR-eEF2 maintained the ability to bind toxin  Active site of toxin can accommodate the bulky ADP-ribose group  Structures of both eEF2 and ADPR-eEF2 recently solved  No major conformational changes induced after ADP ribosylation

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000

eEF2-AF ADPR-eEF2-AF

3000 [eEF2-AF] or [ADPR-eEF2-AF], nM 4000

Characterization of a Loop in ETA

 History of Loop C  Residues 483-490  Functional removal   Decreases activity significantly (1.8 x 10 +4 -fold) Retains ability to bind NAD + near wild-type levels  Alanine-scanning mutagenesis  Some mutant proteins exhibited reduced activity  K D and K M wild-type for NAD + similar to  What is the role of this Loop?

 Catalytic or eEF2 substrate binding?

Loop C

-TAD Tyr-481 His-440 Tyr-470 Glu-553

(Li et al., (1996) PNAS

93,

6902)

Determination of K

M

and K

D

for eEF2

Wild-type Q483A D484A Q485A D488A Relative

k cat

1.00  0.05 0.11  0.01 0.07  0.003 0.69  0.01 0.17  0.01 Relative

K

M(eEF2) 1.00  0.12 1.02  0.09 2.19  0.21 1.01  0.05 2.06  0.13 Relative specificity  Alanine-scanning mutants 1.00  0.07 0.11 0.68   K 0.03  0.002 0.02 0.08  0.001 M for eEF2 unaffected cat ) is affected

1.0

 pG-Loop C mutant protein  Each residue within Loop C replaced with glycine  Functional removal of loop  Retained ability to associate with eEF2 at normal levels

0.8

0.6

0.4

0.2

wild-type PE24H pG-Loop-C PE24H

0.0

0 1000 2000 3000 [eEF2-AF], (nM)

 Loop is a catalytic element  May modulate the transferase activity of the toxin

4000 5000

Findings for Project #3

 Toxin-eEF2 association is pH-dependent  Correlates to that observed for catalytic function  GTP or GDP bound to eEF2 did not affect it as a protein substrate  Structurally the diphthamide and guanyl nucleotide binding site are quite distant  No direct coupling of sites  Toxin maintains the ability to associate with eEF2 after its ADP-ribosylation  Loop C is important for catalysis  May stabilize the transition state structure during the catalytic reaction

PART B: Toxin-eEF2 Interactions

Project #5 FLUORESCENCE-BASED APPROACH TO ELUCIDATE SITES OF CONTACT

Yates, S.P., and Merrill, A.R. Biochem. J. (2004) 379:563-572.

Aim of Study

 Identify contact sites between eEF2 and PE24H  This protein-protein interaction is poorly characterized  Two extreme models are possible  Minimal Contact Model  Maximum Contact Model

PE24H PE24H eEF2

Experimental Approach

 Single cysteine residues introduced into PE24H at 21 defined surface sites and labelled with the fluorophore, IAEDANS

O NHCH 2 CH 2 NH C CH 2 I IAEDANS Ala-519 Gly-525 Gln-603 Ser-507 Gly-549 Ser-515 Ala-476 Glu-486 Arg-490 Thr-442 Thr-554 Ser-459

-TAD Thr-564 Gln-592 Ser-449 Ser-585 Asn-577 Ser-410 Ser-408 Gln-415 Gln-428

(Li et al., (1996) PNAS

93,

6902)

SO 3 H ..

HS CH 2 PROTEIN O SO 3 H NHCH 2 CH 2 NH C CH 2 S CH 2 PROTEIN Protein adduct

+ HI

Experimental Approach

 Fluorescence studies performed in the presence and absence of eEF2  Fluorescence wavelength emission maxima (  em,max )  Fluorescence lifetime  Acrylamide quenching

Fluorescence

 em,max

and Lifetime

Protein adduct 1 S408C 2 3 4 5 6 7 8 S410C Q415C Q428C T442C S449C S459C A476C 9 E486C 10 R490C 11 S507C 12 S515C 13 A519C 14 G525C 15 G549C 16 T554C 17 T564C 18 N577C 19 S585C 20 Q592C 21 Q603C  0 (ns) – eEF2 13.8  0.4 14.4  0.1 14.3  0.3 15.9  0.5 16.9  0.5 15.2  0.1 14.4  0.5 15.9  0.2 14.9  0.1 12.0  0.5 13.2  0.2 16.0  0.2 15.7  0.1 13.4  0.1 15.5  0.4 15.3  0.1 16.7  0.3 12.7  0.1 14.0  0.2 15.2  0.4 14.2  0.1 + eEF2 13.6  0.5 14.5  0.2 13.9  0.3 14.7  0.1 16.8  0.4 15.7  0.9 13.9  0.5 15.6  0.8 14.6  0.6 11.7  0.3 13.7  0.4 15.4  0.3 16.9  0.1 13.4  0.3 15.8  0.2 15.9  0.8 16.5  0.2 12.4  0.4 14.2  0.6 14.9  0.6 14.0  0.7  em,max (nm) – eEF2 481 479 478 478 471 473 479 478 478 483 482 473 479 481 480 478 474 482 481 478 481 + eEF2 481 479 479 479 472 477 480 478 479 483 481 476 478 481 479 477 475 482 481 479 482

Acrylamide Quenching

 Measure the ability of acrylamide to quench the fluorescence of IAEDANS probe attached to PE24H  Acrylamide is a water-soluble, non ionic quencher  The more accessible the probe is to acrylamide, the more quenching is observed  Determine the bimolecular quenching constant (k

q

) in the presence and absence of eEF2 using the Stern-Volmer equation  k

q

is the rate of collisions with the quencher that result in deactivation of excited state of the fluorophore F 0 /F 1

F

0

F

K SV

[

acrylamide

] + 1

K SV

 [Q]  0

k q

Acrylamide Quenching

Protein adduct 1 2 3 4 5 6 7 8 S408C S410C Q415C Q428C T442C S449C S459C A476C 9 E486C 10 R490C 11 S507C 12 S515C 13 A519C 14 G525C 15 G549C 16 T554C 17 T564C 18 N577C 19 S585C 20 Q592C 21 Q603C

k q

(x 10 9 M -1 s -1 ) – eEF2 1.03  0.02 1.29  0.01 1.28  0.04 0.86  0.03 0.56  0.02 0.60  0.02 0.94  0.03 0.89  0.03 1.29  0.04 1.27  0.04 0.80  0.02 0.55  0.03 1.23  0.04 0.96  0.01 0.65  0.03 0.88  0.04 0.50  0.02 1.10  0.04 0.90  0.02 1.42  0.02 0.68  0.02 + eEF2 0.37  0.01 0.36  0.01 0.73  0.01 0.54  0.01 0.20  0.01 0.27  0.01 0.42  0.02 0.58  0.01 0.48  0.02 0.70  0.02 0.33  0.01 0.41  0.01 0.61  0.02 0.75  0.02 0.35  0.01 0.16  0.01 0.27  0.01 0.74  0.01 0.59  0.01 0.79  0.01 0.39  0.01

6.0

5.5

5.0

2.5

2.0

1.5

1.0

4.5

4.0

3.5

3.0

*

Residue Number 50%

Crude Model of PE24H-eEF2 Complex

 Potential eEF2 contact sites on PE24H  Minimal contact between proteins  Diphthamide residue on eEF2 positioned near scissile glycosidic bond of NAD + in active site

554 2 6 442

(Li et al., (1996) PNAS

93,

6902; J ørgensen et al., (2003) Nat. Struc. Biol. 10, 379)

Findings for Project #4

 Fluorescence  em,max and lifetime suggested minimal contact  No large changes observed after eEF2 complexation  Probes near active site or catalytic loop showed greatest change in acrylamide quenching after eEF2 binding  Other locations showed smaller changes in k

q

 A crude toxin-eEF2 model was proposed  Contact between PE24H and eEF2 is minimal

PART B: Toxin-eEF2 Interactions

Project #5 FRET DISTANCE STUDY

Aim of Study

 Better define the proposed minimal contact model  Measure the distances between selected residues in PE24H to eEF2 using FRET  Design and create recombinant mutant proteins of eEF2 to serve as the acceptor fluorophore reference

Mutant eEF2 Proteins – Selection

 Introduce a cysteine into domain IV at a defined location to conjugate the fluorescein probe  Thr-574 and Thr-812 chosen sites to mutate  Non-conserved residues  Surface exposed side chains  Estimated that these residues will be an ideal distance to PE24H

Thr-812 Thr-574 Diphthamide

(J ørgensen et al., (2003) Nat. Struc. Biol. 10, 379)

Mutant eEF2 Proteins - Creation

 Site-directed mutagenesis to create desired mutation  Introduce plasmid into

Saccharomyces cerevisiae

 Select for strain expressing the recombinant mutant eEF2  His-tag purification  T812C-yeEF2H protein is unstable  T574C-yeEF2H purifies at levels similar to wild-type

FRET Approach

 PE24H-AEDANS (donor)  eEF2-AF (acceptor)  Calculate distance between donor and acceptor using a series of equations

E

 1 

F DA F D R

0  9 .

8  10 3  

J

 2

Q D n

 4  1 / 6 Å

R

R

0 

E

 1  1  1 / 6 Donor Fluorescence Acceptor Absorption

J

Wavelength (

)

FRET between Toxin and T574C-eEF2

PE24H AEDANS Adducts S410C E486C R490C S507C G525C N577C S585C Q592C Quantum Yield 0.41 0.43 0.31 0.33 0.33 0.33 0.40 0.38 Overlap Integral,

J

(x 10 -13 cm 3 M -1 ) 1.72372 1.72956 1.80256 1.78248 1.75769 1.75784 1.83424 1.82695 Förster Distance

R

0 (Å) 47.0 47.4 45.2 45.7 45.6 45.6 47.3 47.0 Efficiency (%) 40.9 32.0 24.3 30.3 28.3 22.9 27.3 49.3 Estimated Distance

R

(Å) 49.9 53.8 54.7 52.5 53.3 55.8 55.7 47.2

Anisotropy

 Measures local rotational motion of the IAEDANS probe on PE24H before and after eEF2 complexation  Do any of the probes have significantly restricted mobility after eEF2 binds?

 Can we assume that  2 is two-thirds?

PE24H-AEDANS Adducts S410C E486C R490C S507C G525C N577C S585C Q592C (–) yeEF2 0.086  0.001 0.106  0.002 0.066  0.003 0.075  0.003 0.079  0.002 0.074  0.002 0.078  0.004 0.087  0.002 (+) yeEF2 0.093  0.001 0.113  0.001 0.080  0.003 0.110  0.001 0.097  0.001 0.135  0.001 0.106  0.001 0.129  0.001 % increase 7.0 6.0 17.1 32.3 18.4 45.0 25.9 32.5  N577C-AEDANS  After eEF2 associates this probe displays significantly hindered mobility

Development of FRET Distance Model

 Important to remember  The apparent distances have 10-20% uncertainty  Length of linker for probes contributes to distance

Cys-AEDANS Cys-AF T574C-AF 585 525 592

 Efficiency depends on the orientation of the probes  Position fluorescein probe on eEF2 in three-dimensional space to best satisfy calculated distances

507 410 577 486 490

(Li et al., (1996) PNAS

93,

6902)

Comparison to X-ray Structure of Complex

 Does this FRET model agree with the recently solved toxin eEF2 structure?

(J ørgensen et al., manuscript in preparation)

Effect of

-TAD (An NAD

+

-Analogue)

525 507 592 585 410 577 486 490

(Li et al., (1996) PNAS

93,

6902) PE24H-AEDANS Adducts G525C -  -TAD G525C +  -TAD N577C - N577C +   -TAD -TAD Efficiency (%) 28.3 41.6 22.9 31.1 Estimated Distance

R

(Å) 53.3 48.5 55.8 52.3

Findings for Project #5

 FRET-based model and X-ray structure agree within the error of the technique  N577C-AEDANS is the exception   Anisotropy values suggests probe restriction Distances shorten between the toxin and eEF2 when  -TAD is bound in the complex

Earlier Crude Model vs. X-ray Structure

eEF2 (from Project #4) PE24H

PE24H

(J ørgensen et al., manuscript in preparation)

Final Thoughts

 Improved understanding of structural features important for inhibition  Hetero-ring planarity  X-ray structure of inhibitor with toxin  Able to distinguish a substrate from an inhibitor  HPLC-based NAD + -glycohydrolase assay allows direct observation of products  Toxin highly adaptable  Ability to bind eEF2 and its many forms (GTP/GDP, ADPR)  pH dependence for catalysis now assigned to eEF2 binding  Minimal contact model best describes toxin-eEF2 interactions  FRET distance model correlates with X-ray structure

Acknowledgements

Supervisor

Dr. Rod Merrill

Univ. of Aarhus, Denmark

Dr. Gregers R. Andersen René Jørgensen

Advisory Committee

Dr. Joe Lam Dr. Bob Keates Dr. John Honek, Univ. of Waterloo

Univ. of California, San Francisco

Dr. Norman Oppenheimer

Financial Support

Canadian Cystic Fibrosis Foundation PhD CCFF Studentship Canadian Institutes of Health Research

Merrill Research Group

Trish Taylor, Gerry Prentice, Abdi Musse

Guilford Pharmaceuticals

Dr. Jie Zhang Dr. Dana Ferraris

Examination Committee

Dr. Dan Thomas Dr. Joe Lam Dr. Michael Palmer, Univ. of Waterloo Dr. Jean Gari épy, Univ. of Toronto

University of Guelph

Dr. Adrian Schwan

Family and Friends

Parents Matthew Davidson

My PhD Journey!