Ch15-Inference-Time

Download Report

Transcript Ch15-Inference-Time

Chapter 15
Probabilistic Reasoning over Time
1
Outline
• Time and Uncertainty
• Inference: Filtering, Prediction, Smoothing
• Hidden Markov models
• Brief Introduction to Kalman Filters
• Dynamic Bayesian networks
• Particle Filtering
2
Time and uncertainty
• The world changes; we need to track and predict it
• Diabetes management vs vehicle diagnosis
• Basic idea: copy state and evidence variables for each time step
3
Markov processes (Markov chains)
4
Example
5
Inference tasks
t
6
Filtering
7
Filtering example
Rt-1
P(Rt)
Rt
P(Ut)
t
0.7
t
0.9
f
0.3
f
0.2
Day 1, U1=true
p( R1 )   p( R1 | r0 ) p( r0 )
r0
 0.7,0.3  0.5  0.3,0.7  0.5  0.5,0.5 
p( R1 | u1 )   p(u1 | R1 ) p( R1 )    0.9,0.2    0.5,0.5 
   0.45,0.1  0.818,0.182 
8
Filtering example
Rt-1
P(Rt)
t
0.7
f
0.3
Day 2, U2=true
p( R2 | u1 )   p( R2 | r1 ) p( r1 | u1 )
r1
 0.7,0.3  0.818  0.3,0.7  0.182  0.627,0.373 
p( R2 |, u1 , u2 )   p(u2 | R2 ) p( R2 | u1 )    0.9,0.2    0.627,0.373 
   0.565,0.075  0.883,0.117 
9
Rt
P(Ut)
t
0.9
f
0.2
Smoothing
10
Smoothing example
Rt-1
P(Rt)
t
0.7
f
0.3
Rt
P(Ut)
t
0.9
f
0.2
p(u 2 | R1 )   p(u2 | r2 ) p(| r2 )p( r2 | R1 ) 
r2
11
=0.9  1  0.7,0.3  0.2  1  0.3,0.7  0.69,0.41 
Most likely explanation
12
Viterbi example
13
Hidden Markov models
P( X t 1 | et 1 )   P(et 1 | X t 1 ) x P( X t 1 | xt ) P( xt | e1:t )
t
f1:t  P( xt | e1:t )
14
Country dance algorithm
15
Country dance algorithm
16
Country dance algorithm
17
Country dance algorithm
18
Kalman Filters
19
Updating Gaussian distributions
20
Simple 1-D example
21
General Kalman update
22
2-D tracking example: Filtering
23
2-D tracking example: smoothing
24
Where it breaks
25
26
Dynamic Bayesian networks
27
DBNs vs. HMMs
28
DBNs vs Kalman Filters
29
Exact inference in DBNs
30
Likelihood weighting for DBNs
31
Particle Filtering
32
Particle Filtering contd.
33
Particle ltering performance
34
Chapter 15, Sections 1-5
Summary
35