Transcript power point

Low temperature universality in disordered solids

Moshe Schechter In collaboration with: Philip Stamp (UBC) Alejandro Gaita-Arino (UBC) MS and Stamp, arXiv:0910.1283

Gaita-Arino and MS, in preparation

Low temperature universality in disordered solids

Moshe Schechter In collaboration with: Philip Stamp (UBC) Alejandro Gaita-Arino (UBC) Below

T

T U

 3

K C v

T

  

T

   1   2

Q

 1   / 2 

l

 10  3 Zeller and Pohl, PRB 4, 2029 (1971) Pohl, Liu, Thompson, RMP 74, 991 (2002)

Low temperature universality in disordered solids

Moshe Schechter In collaboration with: Philip Stamp (UBC) Alejandro Gaita-Arino (UBC) Below

T

T U

 3

K C v

T

  

T

   1   1

Q

 1   / 2 

l

 10  3 Freeman and Anderson, PRB 34, 5684 (1971)

Standard tunneling model

2-level systems Below

T

T U

 3

K

1 2   0  0  

P

(  ,  0 ) 

p

0  0

C v

T

   0

T

2

Q

const C v

T

  

T

   1   2

Q

 2 

l

/   10 3

C

0 

p

 0

c

 2 2  0 .

1

n

 

c

2 2

Q

 1  

C

0 / 2  0  1 /

C

0 Anderson, Halperin, Varma, Phil. Mag. 25, 1 (1972) Philips, J. Low Temp. Phys. 7, 351 (1972)

Standard tunneling model

2-level systems Below

T

T U

 3

K

1 2   0  0  

P

(  ,  0 ) 

p

0  0

C v

T

   0

T

2

Q

const C v

T

  

T

   1   2

Q

 2 

l

/   10 3

C

0 

p

 0

c

 2 2  0 .

1

n

 

c

2 2

Q

 1  

C

0 / 2  0  1 /

C

0 TLS in aging, 1/f noise, qubit decoherence Anderson, Halperin, Varma, Phil. Mag. 25, 1 (1972) Philips, J. Low Temp. Phys. 7, 351 (1972)

Standard tunneling model

2-level systems Below

T

T U

 3

K

1 2   0  0  

P

(  ,  0 ) 

p

0  0

C v

T

   0

T

2

Q

 1 

const C v

T

  

T

   1   2

Q

 1   / 2 

l

 10  3

C

0 

p

 0

c

 2 2  0 .

1

n

 

c

2 2

Q

 1  

C

0 / 2  0  1 /

C

0 1. What is tunneling?

C

10 

T U

 3 4. Magnitude of specific heat, non-integer exponents

Theoretical models

     Soft phonons Large scale behavior of renormalized interactions Renormalized dipolar TLS-TLS interactions Frozen domains at the glass transition Ad-hoc models for specific systems (KBr:CN) Parshin, Phys. Re. B 49, 9400 (1994) Leggett, Physica B: Cond. Matt. 169, 332 (1991) Burin, J. Low. Temp. Phys. 100, 309 (1995) Lubchenko and Wolynes, Phys. Rev. Lett. 87, 195901 (2001) Sethna and Chow, Phase Tans. 5, 317 (1985); Solf and Klein, PRB 49, 12703 (1994)

Disordered lattices – KBr:CN

20% < x < 70% : Universal characteristics 70% CN – ferroelectric phase – glassiness not important De Yoreo, Knaak, Meissner, Pohl, PRB 34, 8828 (1986)

CN impurities in KBr:KCl mixed crystals – strain vs. interactions

C

0 

p

 0

c

 2 2 Universal characteristics down to low x.

Tunneling strength linear in x Strain, and not TLS-TLS interactions Watson, PRL 75, 1965 (1995) Topp and Pohl, PRB 66, 064204 (2002)

Amorphous vs. Disordered

Ion implanted crystalline Silicon – amorphisity not important Liu et al., PRL 81, 3171 (1998)

Tau and S TLSs

Change of axis – S excitations 180 flips – tau excitations   

X

x

 

S i z

  

X

 

x

 

x

 

i z

Weak linear Tau coupling to phonons

H

 

i

  

s S i z

 

w

 

i z

 

X

x

 

Weak linear Tau coupling to phonons

H

 

i

  

s S i z

 

w

 

i z

 

X

x

 

Weak linear Tau coupling to phonons

H

 

i

  

s S i z

 

w

 

i z

 

X

x

  

s

E C

 5 eV 

w

E

  0 .

1 eV

g

  

w s

E

E C

 0 .

01  0 .

03 ~ deviations from inter-atomic distance

DFT calculation of weak and strong coupling constants - Confirm theoretical prediction 

w

in agreement with experiment: positive identification of TLSs, prediction for S-TLSs A. Gaita-Arino and M.S., in preparation

Effective TLS interactions

H

 

i

 

s



S i z

 

w

 

i z

 

X

x

 

H S

  

ij

J ij SS S i z S j z

J ij S

S i z

j z

J ij

 

i z

j z

J

0

SS

  

c

2

s

2

R

0 3 

J

0  300 K

T

int 

gT U

g

2

T G J

0

S

   

c s

2 

w R

0 3 

gJ

0  3  10 K

J

0    

c

2

w

2

R

0 3 

g

2

J

0  100 mK

C

0 

p

 0

c

 2 2  0 .

1

n

 

c

2 2

P

(  ,  0 ) 

p

0  0 

p

0  0 .

1

n C s

 0 .

1

n s

 

c

2

s

2  0 .

1

n S

 1

J

0

R

0 3  

c

s

2 2

C

  0 .

1

n

 

c

2 

w

2  0 .

1  

s w

 0 .

1

g

 10  3

n

  1

gJ

0

R

0 3   

s c

 2

w

Dipole gap – strength of the weak

H S

  

ij

J ij SS S i z S j z

J ij S

S i z

j z

J ij

 

i z

j z

n

  1

gJ

0

R

0 3

E

gJ

0

n s

0  1

J

0

R

0 3 

gn

E

J

0

E s i

 

j J ij SS S j z

 

j J ij S

 

j z E

j

 

i J ij S

S i z

 

i J ij

 

i z E S i

 

j

E S i

E

j

 2

J ij S

  0 Efros and Shklovskii, J Phys C 8, L49 (1975)

J ij S

 

c ij S

R

3

ij J

0

S

 

a

3 0

DOS of S-TLS

n s

(

E

) 

n s

(

E

) 

j

 (

E s

E

j

 2

U j

) 

n s

(

E

)

P

(

E s

)

C S

C

 

n s

s

2 

n

 

w

2 

P

(

E

)  0 .

1 1 

a

0  6 

E

 0 .

2

E

 

gJ

0  3 K

Summary

- At low energy tau TLSs dictate physics - Universality and smallness of tunneling strength - Tunneling states: inversion pairs. Intrinsically 2-level systems - Accounts for energy scale of ~3K - Below 3K – effectively noninteracting TLS!

- Above 3K – crossover to

l

/   1 - Strain important, not glassiness or amorphous structure - Agreement with experiments:

n

  1

gJ

0

R

0 3 

T G

 1 , mixed crystals

Amorphous Solids

Local order – small deviations from lattice, ~3% in 1 st n.n. distance Disorder contribution to 

w

 1 /

R

4 and random Utmost experimental / numerical test: finding that low T TLSs are inversion pairs easier experimental test: Existence of S TLSs, with strong phonon interaction and gapped DOS (phonon echo)

Conclusion

   Existence of inversion pairs give rise to the universality and smallness of the tunneling strength Explains well the various experimental results Future work:       Experimental and numerical verification in disordered solids Calculation of the specific heat and thermal conductivity Extension to amorphous solids TLS in 1/f noise and qubit decoherence Relation to glass transition Molecular resonances