Utilization of Crop Sensors to Detect Cotton Growth and N Nutrition

Download Report

Transcript Utilization of Crop Sensors to Detect Cotton Growth and N Nutrition

UTILIZATION OF CROP SENSORS
TO DETECT COTTON GROWTH
AND N NUTRITION
Tyson B. Raper, Jac J. Varco, Ken J. Hubbard,
and Brennan C. Booker
Plant and Soil Science Department
Mississippi State University
INTRODUCTION

N in cotton production
– Recent increase in fertilizer costs
– Deficiency limits yield and lowers quality
– Excess N causes





rank growth
boll rot
difficulty in harvesting
increased need for growth regulators, insecticides, and defoliants
Variable Rate N
– Increase Nitrogen Use Efficiency (NUE)
– Decrease environmental pollution
INTRODUCTION

Ground-Based Sensors
– Provide real-time cotton biomass and greenness
– Fertilize response to crop reflectance
 Need
a more thorough understanding of
relationship between canopy reflectance, cotton
growth, and N nutrition.
OBJECTIVE

Examine the effectiveness of a ground-based
sensor to predict cotton
– Plant growth
– Leaf N
METHODS

Location
– Plant Science Research Farm, Mississippi State, MS
– Randomized complete block design
– 4 Treatments x 4 Replications





12 rows
125’ long
3 10’ alleys
38” row spacing
4 sub-locations
Courtesy: Web Soil Survey 2009
METHODS (CONT.)

Treatment
– 0, 40, 80, and 120 lb N/acre in a split-application
 Planting (50%)
 Early square (50%)

Cultural
–
–
–
–
No-till on beds
DPL BG/RR 445
No growth regulator applied
Low pest thresholds established and maintained
METHODS (CONT.)

Data Collection
– Reflectance
 YARA N Sensor (YARA International ASA, Oslo, Norway)
METHODS (CONT.)

YARA N Sensor
–
–
–
–
–
–
–
–
–
Tractor mounted spectrometer
Wavelength Channels: 5, user selectable*
Wavelength range: 450-900 nm
Optical inputs: 4 reflectance, 1 irradiance
Acquisition interval: 1 second
Area scanned: 50-100 m²/s
Positioning Data: Trimble Pro XR
Speed: 3.5 mph
Bandwidth= ±5 nm
Source: YARA (Hydro Agri), tec5Hellma
METHODS (CONT.)
2009 EARLY FLOWER
0 lb N/Acre
40 lb N/Acre
80 lb N/Acre
120 lb N/Acre
YARA N Sensor
REFLECTANCE, %
60
40
20
0
400
500
600
700
WAVELENGTH, nm
800
900
METHODS (CONT.)

Data Collection
– Reflectance (cont.)
 YARA N Sensor
– Set 76” above soil
– Sense entire field
– Views rows 2, 3, 4, 9, 10, 11
– Data Processing
 Sub-plot locations
– Center of 15’ buffer
– 4 points selected
METHODS (CONT.)

Data Collection
– Sub-Location Plant Data
 Plant Height
– 5 measured per sub-location
 Leaf Sample
– 5 recently matured per sublocation
– % Leaf N
 Whole Plant Sample
– Prior to defoliation
– Yield, total N uptake
METHODS (CONT.)
Sensing / Sampling Stages

Physiological Stages
–
–
–
–
–
–
–
Pre-Square
Early Square
2nd Week of Square
3rd Week of Square
Early Flower
2nd Week of Flowering
Peak flower
RESULTS
2009 SEASON N UPTAKE
2008 SEASON N UPTAKE
140
140
TOTAL N UPTAKE, lb N/acre
TOTAL N UPTAKE, lb N/acre
160
120
100
r ²=0.947
80
60
40
120
100
80
60
r ²=0.871
40
20
0
20
40
60
80
100
FERTILIZER RATE, lb N/acre
120
140
0
20
40
60
80
100
FERTILIZER RATE, lb N/acre
120
140
RESULTS
LINT YIELD 2009 MISSISSIPPI STATE
LINT YIELD 2008 MISSISSIPPI STATE
650
1100
r ²=0.97
LINT YIELD, lb/acre
LINT YIELD, lb/acre
600
1000
900
800
y=
r ²=0.98
550
500
450
400
700
0
40
80
FERTILIZER N RATE, lb/acre
120
350
0
20
40
60
80
100
FERTILIZER N RATE, lb/acre
120
140
RESULTS
2009 RAINFALL
300
300
250
250
200
200
1/100 in.
1/100 in.
2008 RAINFALL
150
150
100
100
50
50
0
Apr
May
Jun
Planting
N Application
Sensing
Jul
Aug
DATE
Sep
Oct
Nov
0
Apr
May
Jun
Planting
N Applications
Sensing
Jul
Aug
DATE
Sep
Oct
Nov
GNDVI vs PLANT HEIGHT
2008
2009
0.9
0.9
r ²=0.96
r ²=0.97
0.8
0.8
GNDVI
GNDVI
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.3
0.4
20
40
60
PLANT HEIGHT, cm
80
100
0
20
40
60
80
PLANT HEIGHT, cm
100
120
GNDVI vs LEAF N
2008 EARLY SQUARE
2009 EARLY SQUARE
0.54
0.52
0.58
0.56
r ²=0.22
r ²=0.67
0.54
0.52
0.50
GNDVI
GDNVI
0.50
0.48
0.46
0.48
0.46
0.44
0.44
0.42
0.40
0.42
0.38
0.40
0.36
3.6
3.8
4.0
4.2
LEAF N, %
4.4
4.6
4.8
3.2
3.4
3.6
3.8
4.0
LEAF N, %
4.2
4.4
4.6
GNDVI vs LEAF N
2008 EARLY FLOWER
2009 EARLY FLOWER
0.76
0.80
0.78
0.74
r ²=0.84
r ²=0.08
0.72
GNDVI
GNDVI
0.76
0.74
0.70
0.68
0.66
0.72
0.64
0.70
0.68
2.4
0.62
2.6
2.8
3.0
3.2
3.4
LEAF N, %
3.6
3.8
4.0
0.60
3.0
3.2
3.4
3.6
3.8
4.0
LEAF N, %
4.2
4.4
4.6
GNDVI vs LEAF N
2008 PEAK FLOWER
2009 PEAK FLOWER
0.80
0.82
0.78
r ²=0.90
r ²=0.87
0.80
GNDVI
GNDVI
0.76
0.74
0.78
0.76
0.72
0.74
0.70
2.6
2.8
3.0
3.2
3.4
LEAF N, %
3.6
3.8
4.0
4.2
0.72
2.8
3.0
3.2
3.4
3.6
3.8
LEAF N, %
4.0
4.2
4.4
GNDVI vs LEAF N
2008/2009 PEAK FLOWERING
0.84
r ²=0.86
0.82
GNDVI
0.80
0.78
0.76
0.74
0.72
0.70
0.68
2.5
3.0
3.5
LEAF N, %
4.0
4.5
RED EDGE INFLECTION

First Derivative of Reflectance Signature
2009 EARLY FLOWER
2009 EARLY FLOWER
0 lb N/Acre
40 lb N/Acre
80 lb N/Acre
120 lb N/Acre
0 lb N/Acre
40 lb N/Acre
80 lb N/Acre
120 lb N/Acre
1.1
dR/dl REFLECTANCE
dR/dl REFLECTANCE
1.0
0.8
0.6
0.4
0.2
1.0
0.9
0.0
0.8
500
600
700
WAVELENGTH, nm
800
700
710
720
WAVELENGTH, nm
730
RED EDGE INFLECTION
REIP calculated on a per plot basis
– Gaussian 4 Parameter Peak Equation
2nd WEEK OF SQUARE
– Utilize l
PLOT 3




700
710
720
740
1 July 2009
f=y0+a*exp(-.5*((x-x0)/b)^2)
0.45
0.40
dR/dlREFLECTANCE

0.35
0.30
0.25
0.20
0.15
0.10
690
700
710
720
730
WAVELENGTH, nm
740
750
REIP vs LEAF N
EARLY SQUARE
25 June 2009
2nd WEEK OF SQUARE
1 July 2009
710
713
WAVELENGTH, nm
WAVELENGTH, nm
712
708
706
r ²=0.864
704
711
710
r ²=0.695
709
708
707
702
3.2
3.4
3.6
3.8
4.0
LEAF N, %
4.2
4.4
4.6
706
3.2
3.4
3.6
3.8
4.0
LEAF N, %
4.2
4.4
4.6
4.8
REIP vs LEAF N
3rd WEEK OF SQUARE
8 July 2009
PEAK FLOWER
25 July 2009
715
716
714
WAVELENGTH, nm
WAVELENGTH, nm
714
713
712
r ²=0.805
711
710
712
r ²=0.731
710
708
709
708
3.4
706
3.6
3.8
4.0
4.2
LEAF N, %
4.4
4.6
4.8
5.0
3.2
3.4
3.6
3.8
LEAF N, %
4.0
4.2
REIP and NDVI
EARLY SQUARE
25 June 2009
EARLY SQUARE
25 June 2009
710
0.60
WAVELENGTH, nm
0.55
NDVI
0.50
r ²=0.650
0.45
0.40
708
706
r ²=0.864
704
0.35
702
0.30
3.2
3.4
3.6
3.8
4.0
LEAF N, %
4.2
4.4
4.6
3.2
3.4
3.6
3.8
4.0
LEAF N, %
4.2
4.4
4.6
CONCLUSIONS

GNDVI relationships with leaf N and plant height improve
through to peak flower.

Consistency across growing seasons supports the utility of
crop reflectance.

GNDVI and NDVI have the potential to be effective
measurements of plant growth in cotton.

REIP has the potential to be an effective measurement of N
status in cotton.

These results support previous REIP publications
(Buscaglia et al., 2002; Fridgen et al., 2004).
Questions?